aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCharles Karney <charles@karney.com>2020-10-23 09:10:09 -0400
committerGitHub <noreply@github.com>2020-10-23 09:10:09 -0400
commit30e0b09275d6803539a80762e90b6e7ca2751c26 (patch)
tree47a350631a205b00eb2664ee6f1801883a272e6a
parente6a992b59985e51e2d205fe56c1abecc4a10ffd0 (diff)
parentf472a974904024a0baf09a4a6d6e4f2ceef2a290 (diff)
downloadPROJ-30e0b09275d6803539a80762e90b6e7ca2751c26.tar.gz
PROJ-30e0b09275d6803539a80762e90b6e7ca2751c26.zip
Merge pull request #2388 from cffk/merc-doc-update
Improve the documentation for the Mercator projection
-rw-r--r--docs/source/operations/projections/merc.rst58
-rw-r--r--docs/source/operations/projections/tmerc.rst2
2 files changed, 36 insertions, 24 deletions
diff --git a/docs/source/operations/projections/merc.rst b/docs/source/operations/projections/merc.rst
index 063d02dc..7b6e13da 100644
--- a/docs/source/operations/projections/merc.rst
+++ b/docs/source/operations/projections/merc.rst
@@ -4,9 +4,12 @@
Mercator
********************************************************************************
-The Mercator projection is a cylindrical map projection that origins from the 15th
-century. It is widely recognized as the first regularly used map projection.
-The projection is conformal which makes it suitable for navigational purposes.
+The Mercator projection is a cylindrical map projection that origins
+from the 16th century. It is widely recognized as the first regularly
+used map projection. It is a conformal projection in which the equator
+projects to a straight line at constant scale. The projection has the
+property that a rhumb line, a course of constant heading, projects to a
+straight line. This makes it suitable for navigational purposes.
+---------------------+----------------------------------------------------------+
@@ -38,8 +41,10 @@ Usage
Applications should be limited to equatorial regions, but is frequently
used for navigational charts with latitude of true scale (:option:`+lat_ts`) specified within
or near chart's boundaries.
-Often inappropriately used for world maps since the regions near the poles
-cannot be shown :cite:`Evenden1995`.
+It is considered to be inappropriate for world maps because of the gross
+distortions in area; for example the projected area of Greenland is
+larger than that of South America, despite the fact that Greenland's
+area is :math:`\frac18` that of South America :cite:`Snyder1987`.
Example using latitude of true scale::
@@ -78,8 +83,6 @@ Parameters
Mathematical definition
#######################
-The formulas describing the Mercator projection are all taken from G. Evenden's libproj manuals :cite:`Evenden2005`.
-
Spherical form
**************
For the spherical form of the projection we introduce the scaling factor:
@@ -93,11 +96,14 @@ Forward projection
.. math::
- x = k_0 \lambda
+ x = k_0R \lambda; \qquad y = k_0R \psi
.. math::
- y = k_0 \ln \left[ \tan \left(\frac{\pi}{4} + \frac{\phi}{2} \right) \right]
+ \psi &= \ln \tan \biggl(\frac{\pi}{4} + \frac{\phi}{2} \biggr)\\
+ &= \sinh^{-1}\tan\phi
+
+The quantity :math:`\psi` is the isometric latitude.
Inverse projection
@@ -105,38 +111,43 @@ Inverse projection
.. math::
- \lambda = \frac{x}{k_0}
+ \lambda = \frac{x}{k_0R}; \qquad \psi = \frac{y}{k_0R}
.. math::
- \phi = \frac{\pi}{2} - 2 \arctan \left[ e^{-y/k_0} \right]
+ \phi &= \frac{\pi}{2} - 2 \tan^{-1} \exp(-\psi)\\
+ &= \tan^{-1}\sinh\psi
-Ellisoidal form
-***************
+Ellipsoidal form
+****************
For the ellipsoidal form of the projection we introduce the scaling factor:
.. math::
- k_0 = m\left( \phi_{ts} \right)
+ k_0 = m( \phi_{ts} )
+
+where
-where :math:`m\left(\phi\right)` is the parallel radius at latitude :math:`\phi`.
+.. math::
-We also use the Isometric Latitude kernel function :math:`t()`.
+ m(\phi) = \frac{\cos\phi}{\sqrt{1 - e^2\sin^2\phi}}
-.. note::
- m() and t() should be described properly on a separate page about the theory of projections on the ellipsoid.
+:math:`a\,m(\phi)` is the radius of the circle of latitude :math:`\phi`.
Forward projection
==================
.. math::
- x = k_0 \lambda
+ x = k_0 a \lambda; \qquad y = k_0 a \psi
.. math::
- y = k_0 \ln t \left( \phi \right)
+ \psi &= \ln\tan\biggl(\frac\pi4 + \frac{\phi}2\biggr)
+ -\frac12 e
+ \ln \biggl(\frac{1 + e \sin\phi}{1 - e \sin\phi}\biggr)\\
+ &= \sinh^{-1}\tan\phi - e \tanh^{-1}(e \sin\phi)
Inverse projection
@@ -144,11 +155,10 @@ Inverse projection
.. math::
- \lambda = \frac{x}{k_0}
-
-.. math::
+ \lambda = \frac{x}{k_0 a}; \quad \psi = \frac{y}{k_0 a}
- \phi = t^{-1}\left[ e^{ -y/k_0 } \right]
+The latitude :math:`\phi` is found by inverting the equation for
+:math:`\psi` iteratively.
Further reading
###############
diff --git a/docs/source/operations/projections/tmerc.rst b/docs/source/operations/projections/tmerc.rst
index 3b2a0190..7fed3846 100644
--- a/docs/source/operations/projections/tmerc.rst
+++ b/docs/source/operations/projections/tmerc.rst
@@ -5,6 +5,8 @@ Transverse Mercator
********************************************************************************
The transverse Mercator projection in its various forms is the most widely used projected coordinate system for world topographical and offshore mapping.
+It is a conformal projection in which a chosen meridian projects to a
+straight line at constant scale.
+---------------------+----------------------------------------------------------+
| **Classification** | Transverse and oblique cylindrical |