aboutsummaryrefslogtreecommitdiff
path: root/src/geodesic.c
diff options
context:
space:
mode:
authorEven Rouault <even.rouault@spatialys.com>2018-12-20 18:45:15 +0100
committerEven Rouault <even.rouault@spatialys.com>2018-12-26 10:08:55 +0100
commit80dad6ef2bed4a83008db06986dc168918d48476 (patch)
tree41b4675d169f849516649700ab4f50d4cffa4c02 /src/geodesic.c
parent0a4afc8affdb97edc65863eeaaf62f7513910c9f (diff)
downloadPROJ-80dad6ef2bed4a83008db06986dc168918d48476.tar.gz
PROJ-80dad6ef2bed4a83008db06986dc168918d48476.zip
cpp conversion: revert geodesic.cpp to geodesic.c
Diffstat (limited to 'src/geodesic.c')
-rw-r--r--src/geodesic.c2104
1 files changed, 2104 insertions, 0 deletions
diff --git a/src/geodesic.c b/src/geodesic.c
new file mode 100644
index 00000000..5504cb3b
--- /dev/null
+++ b/src/geodesic.c
@@ -0,0 +1,2104 @@
+/**
+ * \file geodesic.c
+ * \brief Implementation of the geodesic routines in C
+ *
+ * For the full documentation see geodesic.h.
+ **********************************************************************/
+
+/** @cond SKIP */
+
+/*
+ * This is a C implementation of the geodesic algorithms described in
+ *
+ * C. F. F. Karney,
+ * Algorithms for geodesics,
+ * J. Geodesy <b>87</b>, 43--55 (2013);
+ * https://doi.org/10.1007/s00190-012-0578-z
+ * Addenda: https://geographiclib.sourceforge.io/geod-addenda.html
+ *
+ * See the comments in geodesic.h for documentation.
+ *
+ * Copyright (c) Charles Karney (2012-2018) <charles@karney.com> and licensed
+ * under the MIT/X11 License. For more information, see
+ * https://geographiclib.sourceforge.io/
+ */
+
+#include "geodesic.h"
+#ifdef PJ_LIB__
+#include "proj_math.h"
+#else
+#include <math.h>
+#endif
+
+#if !defined(HAVE_C99_MATH)
+#define HAVE_C99_MATH 0
+#endif
+
+#if !defined(__cplusplus)
+#define nullptr 0
+#endif
+
+#define GEOGRAPHICLIB_GEODESIC_ORDER 6
+#define nA1 GEOGRAPHICLIB_GEODESIC_ORDER
+#define nC1 GEOGRAPHICLIB_GEODESIC_ORDER
+#define nC1p GEOGRAPHICLIB_GEODESIC_ORDER
+#define nA2 GEOGRAPHICLIB_GEODESIC_ORDER
+#define nC2 GEOGRAPHICLIB_GEODESIC_ORDER
+#define nA3 GEOGRAPHICLIB_GEODESIC_ORDER
+#define nA3x nA3
+#define nC3 GEOGRAPHICLIB_GEODESIC_ORDER
+#define nC3x ((nC3 * (nC3 - 1)) / 2)
+#define nC4 GEOGRAPHICLIB_GEODESIC_ORDER
+#define nC4x ((nC4 * (nC4 + 1)) / 2)
+#define nC (GEOGRAPHICLIB_GEODESIC_ORDER + 1)
+
+typedef double real;
+typedef int boolx;
+
+static unsigned init = 0;
+static const int FALSE = 0;
+static const int TRUE = 1;
+static unsigned digits, maxit1, maxit2;
+static real epsilon, realmin, pi, degree, NaN,
+ tiny, tol0, tol1, tol2, tolb, xthresh;
+
+static void Init() {
+ if (!init) {
+#if defined(__DBL_MANT_DIG__)
+ digits = __DBL_MANT_DIG__;
+#else
+ digits = 53;
+#endif
+#if defined(__DBL_EPSILON__)
+ epsilon = __DBL_EPSILON__;
+#else
+ epsilon = pow(0.5, digits - 1);
+#endif
+#if defined(__DBL_MIN__)
+ realmin = __DBL_MIN__;
+#else
+ realmin = pow(0.5, 1022);
+#endif
+#if defined(M_PI)
+ pi = M_PI;
+#else
+ pi = atan2(0.0, -1.0);
+#endif
+ maxit1 = 20;
+ maxit2 = maxit1 + digits + 10;
+ tiny = sqrt(realmin);
+ tol0 = epsilon;
+ /* Increase multiplier in defn of tol1 from 100 to 200 to fix inverse case
+ * 52.784459512564 0 -52.784459512563990912 179.634407464943777557
+ * which otherwise failed for Visual Studio 10 (Release and Debug) */
+ tol1 = 200 * tol0;
+ tol2 = sqrt(tol0);
+ /* Check on bisection interval */
+ tolb = tol0 * tol2;
+ xthresh = 1000 * tol2;
+ degree = pi/180;
+ #if defined(NAN)
+ NaN = NAN;
+ #else
+ {
+ real minus1 = -1;
+ /* cppcheck-suppress wrongmathcall */
+ NaN = sqrt(minus1);
+ }
+ #endif
+ init = 1;
+ }
+}
+
+enum captype {
+ CAP_NONE = 0U,
+ CAP_C1 = 1U<<0,
+ CAP_C1p = 1U<<1,
+ CAP_C2 = 1U<<2,
+ CAP_C3 = 1U<<3,
+ CAP_C4 = 1U<<4,
+ CAP_ALL = 0x1FU,
+ OUT_ALL = 0x7F80U
+};
+
+static real sq(real x) { return x * x; }
+#if HAVE_C99_MATH
+#define atanhx atanh
+#define copysignx copysign
+#define hypotx hypot
+#define cbrtx cbrt
+#else
+static real log1px(real x) {
+ volatile real
+ y = 1 + x,
+ z = y - 1;
+ /* Here's the explanation for this magic: y = 1 + z, exactly, and z
+ * approx x, thus log(y)/z (which is nearly constant near z = 0) returns
+ * a good approximation to the true log(1 + x)/x. The multiplication x *
+ * (log(y)/z) introduces little additional error. */
+ return z == 0 ? x : x * log(y) / z;
+}
+
+static real atanhx(real x) {
+ real y = fabs(x); /* Enforce odd parity */
+ y = log1px(2 * y/(1 - y))/2;
+ return x < 0 ? -y : y;
+}
+
+static real copysignx(real x, real y) {
+ return fabs(x) * (y < 0 || (y == 0 && 1/y < 0) ? -1 : 1);
+}
+
+static real hypotx(real x, real y)
+{ return sqrt(x * x + y * y); }
+
+static real cbrtx(real x) {
+ real y = pow(fabs(x), 1/(real)(3)); /* Return the real cube root */
+ return x < 0 ? -y : y;
+}
+#endif
+
+static real sumx(real u, real v, real* t) {
+ volatile real s = u + v;
+ volatile real up = s - v;
+ volatile real vpp = s - up;
+ up -= u;
+ vpp -= v;
+ if (t) *t = -(up + vpp);
+ /* error-free sum:
+ * u + v = s + t
+ * = round(u + v) + t */
+ return s;
+}
+
+static real polyval(int N, const real p[], real x) {
+ real y = N < 0 ? 0 : *p++;
+ while (--N >= 0) y = y * x + *p++;
+ return y;
+}
+
+/* mimic C++ std::min and std::max */
+static real minx(real a, real b)
+{ return (b < a) ? b : a; }
+
+static real maxx(real a, real b)
+{ return (a < b) ? b : a; }
+
+static void swapx(real* x, real* y)
+{ real t = *x; *x = *y; *y = t; }
+
+static void norm2(real* sinx, real* cosx) {
+ real r = hypotx(*sinx, *cosx);
+ *sinx /= r;
+ *cosx /= r;
+}
+
+static real AngNormalize(real x) {
+#if HAVE_C99_MATH
+ x = remainder(x, (real)(360));
+ return x != -180 ? x : 180;
+#else
+ real y = fmod(x, (real)(360));
+#if defined(_MSC_VER) && _MSC_VER < 1900
+ /*
+ * Before version 14 (2015), Visual Studio had problems dealing
+ * with -0.0. Specifically
+ * VC 10,11,12 and 32-bit compile: fmod(-0.0, 360.0) -> +0.0
+ * sincosdx has a similar fix.
+ * python 2.7 on Windows 32-bit machines has the same problem.
+ */
+ if (x == 0) y = x;
+#endif
+ return y <= -180 ? y + 360 : (y <= 180 ? y : y - 360);
+#endif
+}
+
+static real LatFix(real x)
+{ return fabs(x) > 90 ? NaN : x; }
+
+static real AngDiff(real x, real y, real* e) {
+ real t, d = AngNormalize(sumx(AngNormalize(-x), AngNormalize(y), &t));
+ /* Here y - x = d + t (mod 360), exactly, where d is in (-180,180] and
+ * abs(t) <= eps (eps = 2^-45 for doubles). The only case where the
+ * addition of t takes the result outside the range (-180,180] is d = 180
+ * and t > 0. The case, d = -180 + eps, t = -eps, can't happen, since
+ * sum would have returned the exact result in such a case (i.e., given t
+ * = 0). */
+ return sumx(d == 180 && t > 0 ? -180 : d, t, e);
+}
+
+static real AngRound(real x) {
+ const real z = 1/(real)(16);
+ volatile real y;
+ if (x == 0) return 0;
+ y = fabs(x);
+ /* The compiler mustn't "simplify" z - (z - y) to y */
+ y = y < z ? z - (z - y) : y;
+ return x < 0 ? -y : y;
+}
+
+static void sincosdx(real x, real* sinx, real* cosx) {
+ /* In order to minimize round-off errors, this function exactly reduces
+ * the argument to the range [-45, 45] before converting it to radians. */
+ real r, s, c; int q;
+#if HAVE_C99_MATH && !defined(__GNUC__)
+ /* Disable for gcc because of bug in glibc version < 2.22, see
+ * https://sourceware.org/bugzilla/show_bug.cgi?id=17569 */
+ r = remquo(x, (real)(90), &q);
+#else
+ r = fmod(x, (real)(360));
+ /* check for NaN */
+ q = r == r ? (int)(floor(r / 90 + (real)(0.5))) : 0;
+ r -= 90 * q;
+#endif
+ /* now abs(r) <= 45 */
+ r *= degree;
+ /* Possibly could call the gnu extension sincos */
+ s = sin(r); c = cos(r);
+#if defined(_MSC_VER) && _MSC_VER < 1900
+ /*
+ * Before version 14 (2015), Visual Studio had problems dealing
+ * with -0.0. Specifically
+ * VC 10,11,12 and 32-bit compile: fmod(-0.0, 360.0) -> +0.0
+ * VC 12 and 64-bit compile: sin(-0.0) -> +0.0
+ * AngNormalize has a similar fix.
+ * python 2.7 on Windows 32-bit machines has the same problem.
+ */
+ if (x == 0) s = x;
+#endif
+ switch ((unsigned)q & 3U) {
+ case 0U: *sinx = s; *cosx = c; break;
+ case 1U: *sinx = c; *cosx = -s; break;
+ case 2U: *sinx = -s; *cosx = -c; break;
+ default: *sinx = -c; *cosx = s; break; /* case 3U */
+ }
+ if (x != 0) { *sinx += (real)(0); *cosx += (real)(0); }
+}
+
+static real atan2dx(real y, real x) {
+ /* In order to minimize round-off errors, this function rearranges the
+ * arguments so that result of atan2 is in the range [-pi/4, pi/4] before
+ * converting it to degrees and mapping the result to the correct
+ * quadrant. */
+ int q = 0; real ang;
+ if (fabs(y) > fabs(x)) { swapx(&x, &y); q = 2; }
+ if (x < 0) { x = -x; ++q; }
+ /* here x >= 0 and x >= abs(y), so angle is in [-pi/4, pi/4] */
+ ang = atan2(y, x) / degree;
+ switch (q) {
+ /* Note that atan2d(-0.0, 1.0) will return -0. However, we expect that
+ * atan2d will not be called with y = -0. If need be, include
+ *
+ * case 0: ang = 0 + ang; break;
+ */
+ case 1: ang = (y >= 0 ? 180 : -180) - ang; break;
+ case 2: ang = 90 - ang; break;
+ case 3: ang = -90 + ang; break;
+ }
+ return ang;
+}
+
+static void A3coeff(struct geod_geodesic* g);
+static void C3coeff(struct geod_geodesic* g);
+static void C4coeff(struct geod_geodesic* g);
+static real SinCosSeries(boolx sinp,
+ real sinx, real cosx,
+ const real c[], int n);
+static void Lengths(const struct geod_geodesic* g,
+ real eps, real sig12,
+ real ssig1, real csig1, real dn1,
+ real ssig2, real csig2, real dn2,
+ real cbet1, real cbet2,
+ real* ps12b, real* pm12b, real* pm0,
+ real* pM12, real* pM21,
+ /* Scratch area of the right size */
+ real Ca[]);
+static real Astroid(real x, real y);
+static real InverseStart(const struct geod_geodesic* g,
+ real sbet1, real cbet1, real dn1,
+ real sbet2, real cbet2, real dn2,
+ real lam12, real slam12, real clam12,
+ real* psalp1, real* pcalp1,
+ /* Only updated if return val >= 0 */
+ real* psalp2, real* pcalp2,
+ /* Only updated for short lines */
+ real* pdnm,
+ /* Scratch area of the right size */
+ real Ca[]);
+static real Lambda12(const struct geod_geodesic* g,
+ real sbet1, real cbet1, real dn1,
+ real sbet2, real cbet2, real dn2,
+ real salp1, real calp1,
+ real slam120, real clam120,
+ real* psalp2, real* pcalp2,
+ real* psig12,
+ real* pssig1, real* pcsig1,
+ real* pssig2, real* pcsig2,
+ real* peps,
+ real* pdomg12,
+ boolx diffp, real* pdlam12,
+ /* Scratch area of the right size */
+ real Ca[]);
+static real A3f(const struct geod_geodesic* g, real eps);
+static void C3f(const struct geod_geodesic* g, real eps, real c[]);
+static void C4f(const struct geod_geodesic* g, real eps, real c[]);
+static real A1m1f(real eps);
+static void C1f(real eps, real c[]);
+static void C1pf(real eps, real c[]);
+static real A2m1f(real eps);
+static void C2f(real eps, real c[]);
+static int transit(real lon1, real lon2);
+static int transitdirect(real lon1, real lon2);
+static void accini(real s[]);
+static void acccopy(const real s[], real t[]);
+static void accadd(real s[], real y);
+static real accsum(const real s[], real y);
+static void accneg(real s[]);
+
+void geod_init(struct geod_geodesic* g, real a, real f) {
+ if (!init) Init();
+ g->a = a;
+ g->f = f;
+ g->f1 = 1 - g->f;
+ g->e2 = g->f * (2 - g->f);
+ g->ep2 = g->e2 / sq(g->f1); /* e2 / (1 - e2) */
+ g->n = g->f / ( 2 - g->f);
+ g->b = g->a * g->f1;
+ g->c2 = (sq(g->a) + sq(g->b) *
+ (g->e2 == 0 ? 1 :
+ (g->e2 > 0 ? atanhx(sqrt(g->e2)) : atan(sqrt(-g->e2))) /
+ sqrt(fabs(g->e2))))/2; /* authalic radius squared */
+ /* The sig12 threshold for "really short". Using the auxiliary sphere
+ * solution with dnm computed at (bet1 + bet2) / 2, the relative error in the
+ * azimuth consistency check is sig12^2 * abs(f) * min(1, 1-f/2) / 2. (Error
+ * measured for 1/100 < b/a < 100 and abs(f) >= 1/1000. For a given f and
+ * sig12, the max error occurs for lines near the pole. If the old rule for
+ * computing dnm = (dn1 + dn2)/2 is used, then the error increases by a
+ * factor of 2.) Setting this equal to epsilon gives sig12 = etol2. Here
+ * 0.1 is a safety factor (error decreased by 100) and max(0.001, abs(f))
+ * stops etol2 getting too large in the nearly spherical case. */
+ g->etol2 = 0.1 * tol2 /
+ sqrt( maxx((real)(0.001), fabs(g->f)) * minx((real)(1), 1 - g->f/2) / 2 );
+
+ A3coeff(g);
+ C3coeff(g);
+ C4coeff(g);
+}
+
+static void geod_lineinit_int(struct geod_geodesicline* l,
+ const struct geod_geodesic* g,
+ real lat1, real lon1,
+ real azi1, real salp1, real calp1,
+ unsigned caps) {
+ real cbet1, sbet1, eps;
+ l->a = g->a;
+ l->f = g->f;
+ l->b = g->b;
+ l->c2 = g->c2;
+ l->f1 = g->f1;
+ /* If caps is 0 assume the standard direct calculation */
+ l->caps = (caps ? caps : GEOD_DISTANCE_IN | GEOD_LONGITUDE) |
+ /* always allow latitude and azimuth and unrolling of longitude */
+ GEOD_LATITUDE | GEOD_AZIMUTH | GEOD_LONG_UNROLL;
+
+ l->lat1 = LatFix(lat1);
+ l->lon1 = lon1;
+ l->azi1 = azi1;
+ l->salp1 = salp1;
+ l->calp1 = calp1;
+
+ sincosdx(AngRound(l->lat1), &sbet1, &cbet1); sbet1 *= l->f1;
+ /* Ensure cbet1 = +epsilon at poles */
+ norm2(&sbet1, &cbet1); cbet1 = maxx(tiny, cbet1);
+ l->dn1 = sqrt(1 + g->ep2 * sq(sbet1));
+
+ /* Evaluate alp0 from sin(alp1) * cos(bet1) = sin(alp0), */
+ l->salp0 = l->salp1 * cbet1; /* alp0 in [0, pi/2 - |bet1|] */
+ /* Alt: calp0 = hypot(sbet1, calp1 * cbet1). The following
+ * is slightly better (consider the case salp1 = 0). */
+ l->calp0 = hypotx(l->calp1, l->salp1 * sbet1);
+ /* Evaluate sig with tan(bet1) = tan(sig1) * cos(alp1).
+ * sig = 0 is nearest northward crossing of equator.
+ * With bet1 = 0, alp1 = pi/2, we have sig1 = 0 (equatorial line).
+ * With bet1 = pi/2, alp1 = -pi, sig1 = pi/2
+ * With bet1 = -pi/2, alp1 = 0 , sig1 = -pi/2
+ * Evaluate omg1 with tan(omg1) = sin(alp0) * tan(sig1).
+ * With alp0 in (0, pi/2], quadrants for sig and omg coincide.
+ * No atan2(0,0) ambiguity at poles since cbet1 = +epsilon.
+ * With alp0 = 0, omg1 = 0 for alp1 = 0, omg1 = pi for alp1 = pi. */
+ l->ssig1 = sbet1; l->somg1 = l->salp0 * sbet1;
+ l->csig1 = l->comg1 = sbet1 != 0 || l->calp1 != 0 ? cbet1 * l->calp1 : 1;
+ norm2(&l->ssig1, &l->csig1); /* sig1 in (-pi, pi] */
+ /* norm2(somg1, comg1); -- don't need to normalize! */
+
+ l->k2 = sq(l->calp0) * g->ep2;
+ eps = l->k2 / (2 * (1 + sqrt(1 + l->k2)) + l->k2);
+
+ if (l->caps & CAP_C1) {
+ real s, c;
+ l->A1m1 = A1m1f(eps);
+ C1f(eps, l->C1a);
+ l->B11 = SinCosSeries(TRUE, l->ssig1, l->csig1, l->C1a, nC1);
+ s = sin(l->B11); c = cos(l->B11);
+ /* tau1 = sig1 + B11 */
+ l->stau1 = l->ssig1 * c + l->csig1 * s;
+ l->ctau1 = l->csig1 * c - l->ssig1 * s;
+ /* Not necessary because C1pa reverts C1a
+ * B11 = -SinCosSeries(TRUE, stau1, ctau1, C1pa, nC1p); */
+ }
+
+ if (l->caps & CAP_C1p)
+ C1pf(eps, l->C1pa);
+
+ if (l->caps & CAP_C2) {
+ l->A2m1 = A2m1f(eps);
+ C2f(eps, l->C2a);
+ l->B21 = SinCosSeries(TRUE, l->ssig1, l->csig1, l->C2a, nC2);
+ }
+
+ if (l->caps & CAP_C3) {
+ C3f(g, eps, l->C3a);
+ l->A3c = -l->f * l->salp0 * A3f(g, eps);
+ l->B31 = SinCosSeries(TRUE, l->ssig1, l->csig1, l->C3a, nC3-1);
+ }
+
+ if (l->caps & CAP_C4) {
+ C4f(g, eps, l->C4a);
+ /* Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0) */
+ l->A4 = sq(l->a) * l->calp0 * l->salp0 * g->e2;
+ l->B41 = SinCosSeries(FALSE, l->ssig1, l->csig1, l->C4a, nC4);
+ }
+
+ l->a13 = l->s13 = NaN;
+}
+
+void geod_lineinit(struct geod_geodesicline* l,
+ const struct geod_geodesic* g,
+ real lat1, real lon1, real azi1, unsigned caps) {
+ real salp1, calp1;
+ azi1 = AngNormalize(azi1);
+ /* Guard against underflow in salp0 */
+ sincosdx(AngRound(azi1), &salp1, &calp1);
+ geod_lineinit_int(l, g, lat1, lon1, azi1, salp1, calp1, caps);
+}
+
+void geod_gendirectline(struct geod_geodesicline* l,
+ const struct geod_geodesic* g,
+ real lat1, real lon1, real azi1,
+ unsigned flags, real s12_a12,
+ unsigned caps) {
+ geod_lineinit(l, g, lat1, lon1, azi1, caps);
+ geod_gensetdistance(l, flags, s12_a12);
+}
+
+void geod_directline(struct geod_geodesicline* l,
+ const struct geod_geodesic* g,
+ real lat1, real lon1, real azi1,
+ real s12, unsigned caps) {
+ geod_gendirectline(l, g, lat1, lon1, azi1, GEOD_NOFLAGS, s12, caps);
+}
+
+real geod_genposition(const struct geod_geodesicline* l,
+ unsigned flags, real s12_a12,
+ real* plat2, real* plon2, real* pazi2,
+ real* ps12, real* pm12,
+ real* pM12, real* pM21,
+ real* pS12) {
+ real lat2 = 0, lon2 = 0, azi2 = 0, s12 = 0,
+ m12 = 0, M12 = 0, M21 = 0, S12 = 0;
+ /* Avoid warning about uninitialized B12. */
+ real sig12, ssig12, csig12, B12 = 0, AB1 = 0;
+ real omg12, lam12, lon12;
+ real ssig2, csig2, sbet2, cbet2, somg2, comg2, salp2, calp2, dn2;
+ unsigned outmask =
+ (plat2 ? GEOD_LATITUDE : GEOD_NONE) |
+ (plon2 ? GEOD_LONGITUDE : GEOD_NONE) |
+ (pazi2 ? GEOD_AZIMUTH : GEOD_NONE) |
+ (ps12 ? GEOD_DISTANCE : GEOD_NONE) |
+ (pm12 ? GEOD_REDUCEDLENGTH : GEOD_NONE) |
+ (pM12 || pM21 ? GEOD_GEODESICSCALE : GEOD_NONE) |
+ (pS12 ? GEOD_AREA : GEOD_NONE);
+
+ outmask &= l->caps & OUT_ALL;
+ if (!( TRUE /*Init()*/ &&
+ (flags & GEOD_ARCMODE || (l->caps & (GEOD_DISTANCE_IN & OUT_ALL))) ))
+ /* Uninitialized or impossible distance calculation requested */
+ return NaN;
+
+ if (flags & GEOD_ARCMODE) {
+ /* Interpret s12_a12 as spherical arc length */
+ sig12 = s12_a12 * degree;
+ sincosdx(s12_a12, &ssig12, &csig12);
+ } else {
+ /* Interpret s12_a12 as distance */
+ real
+ tau12 = s12_a12 / (l->b * (1 + l->A1m1)),
+ s = sin(tau12),
+ c = cos(tau12);
+ /* tau2 = tau1 + tau12 */
+ B12 = - SinCosSeries(TRUE,
+ l->stau1 * c + l->ctau1 * s,
+ l->ctau1 * c - l->stau1 * s,
+ l->C1pa, nC1p);
+ sig12 = tau12 - (B12 - l->B11);
+ ssig12 = sin(sig12); csig12 = cos(sig12);
+ if (fabs(l->f) > 0.01) {
+ /* Reverted distance series is inaccurate for |f| > 1/100, so correct
+ * sig12 with 1 Newton iteration. The following table shows the
+ * approximate maximum error for a = WGS_a() and various f relative to
+ * GeodesicExact.
+ * erri = the error in the inverse solution (nm)
+ * errd = the error in the direct solution (series only) (nm)
+ * errda = the error in the direct solution (series + 1 Newton) (nm)
+ *
+ * f erri errd errda
+ * -1/5 12e6 1.2e9 69e6
+ * -1/10 123e3 12e6 765e3
+ * -1/20 1110 108e3 7155
+ * -1/50 18.63 200.9 27.12
+ * -1/100 18.63 23.78 23.37
+ * -1/150 18.63 21.05 20.26
+ * 1/150 22.35 24.73 25.83
+ * 1/100 22.35 25.03 25.31
+ * 1/50 29.80 231.9 30.44
+ * 1/20 5376 146e3 10e3
+ * 1/10 829e3 22e6 1.5e6
+ * 1/5 157e6 3.8e9 280e6 */
+ real serr;
+ ssig2 = l->ssig1 * csig12 + l->csig1 * ssig12;
+ csig2 = l->csig1 * csig12 - l->ssig1 * ssig12;
+ B12 = SinCosSeries(TRUE, ssig2, csig2, l->C1a, nC1);
+ serr = (1 + l->A1m1) * (sig12 + (B12 - l->B11)) - s12_a12 / l->b;
+ sig12 = sig12 - serr / sqrt(1 + l->k2 * sq(ssig2));
+ ssig12 = sin(sig12); csig12 = cos(sig12);
+ /* Update B12 below */
+ }
+ }
+
+ /* sig2 = sig1 + sig12 */
+ ssig2 = l->ssig1 * csig12 + l->csig1 * ssig12;
+ csig2 = l->csig1 * csig12 - l->ssig1 * ssig12;
+ dn2 = sqrt(1 + l->k2 * sq(ssig2));
+ if (outmask & (GEOD_DISTANCE | GEOD_REDUCEDLENGTH | GEOD_GEODESICSCALE)) {
+ if (flags & GEOD_ARCMODE || fabs(l->f) > 0.01)
+ B12 = SinCosSeries(TRUE, ssig2, csig2, l->C1a, nC1);
+ AB1 = (1 + l->A1m1) * (B12 - l->B11);
+ }
+ /* sin(bet2) = cos(alp0) * sin(sig2) */
+ sbet2 = l->calp0 * ssig2;
+ /* Alt: cbet2 = hypot(csig2, salp0 * ssig2); */
+ cbet2 = hypotx(l->salp0, l->calp0 * csig2);
+ if (cbet2 == 0)
+ /* I.e., salp0 = 0, csig2 = 0. Break the degeneracy in this case */
+ cbet2 = csig2 = tiny;
+ /* tan(alp0) = cos(sig2)*tan(alp2) */
+ salp2 = l->salp0; calp2 = l->calp0 * csig2; /* No need to normalize */
+
+ if (outmask & GEOD_DISTANCE)
+ s12 = (flags & GEOD_ARCMODE) ?
+ l->b * ((1 + l->A1m1) * sig12 + AB1) :
+ s12_a12;
+
+ if (outmask & GEOD_LONGITUDE) {
+ real E = copysignx(1, l->salp0); /* east or west going? */
+ /* tan(omg2) = sin(alp0) * tan(sig2) */
+ somg2 = l->salp0 * ssig2; comg2 = csig2; /* No need to normalize */
+ /* omg12 = omg2 - omg1 */
+ omg12 = (flags & GEOD_LONG_UNROLL)
+ ? E * (sig12
+ - (atan2( ssig2, csig2) - atan2( l->ssig1, l->csig1))
+ + (atan2(E * somg2, comg2) - atan2(E * l->somg1, l->comg1)))
+ : atan2(somg2 * l->comg1 - comg2 * l->somg1,
+ comg2 * l->comg1 + somg2 * l->somg1);
+ lam12 = omg12 + l->A3c *
+ ( sig12 + (SinCosSeries(TRUE, ssig2, csig2, l->C3a, nC3-1)
+ - l->B31));
+ lon12 = lam12 / degree;
+ lon2 = (flags & GEOD_LONG_UNROLL) ? l->lon1 + lon12 :
+ AngNormalize(AngNormalize(l->lon1) + AngNormalize(lon12));
+ }
+
+ if (outmask & GEOD_LATITUDE)
+ lat2 = atan2dx(sbet2, l->f1 * cbet2);
+
+ if (outmask & GEOD_AZIMUTH)
+ azi2 = atan2dx(salp2, calp2);
+
+ if (outmask & (GEOD_REDUCEDLENGTH | GEOD_GEODESICSCALE)) {
+ real
+ B22 = SinCosSeries(TRUE, ssig2, csig2, l->C2a, nC2),
+ AB2 = (1 + l->A2m1) * (B22 - l->B21),
+ J12 = (l->A1m1 - l->A2m1) * sig12 + (AB1 - AB2);
+ if (outmask & GEOD_REDUCEDLENGTH)
+ /* Add parens around (csig1 * ssig2) and (ssig1 * csig2) to ensure
+ * accurate cancellation in the case of coincident points. */
+ m12 = l->b * ((dn2 * (l->csig1 * ssig2) - l->dn1 * (l->ssig1 * csig2))
+ - l->csig1 * csig2 * J12);
+ if (outmask & GEOD_GEODESICSCALE) {
+ real t = l->k2 * (ssig2 - l->ssig1) * (ssig2 + l->ssig1) /
+ (l->dn1 + dn2);
+ M12 = csig12 + (t * ssig2 - csig2 * J12) * l->ssig1 / l->dn1;
+ M21 = csig12 - (t * l->ssig1 - l->csig1 * J12) * ssig2 / dn2;
+ }
+ }
+
+ if (outmask & GEOD_AREA) {
+ real
+ B42 = SinCosSeries(FALSE, ssig2, csig2, l->C4a, nC4);
+ real salp12, calp12;
+ if (l->calp0 == 0 || l->salp0 == 0) {
+ /* alp12 = alp2 - alp1, used in atan2 so no need to normalize */
+ salp12 = salp2 * l->calp1 - calp2 * l->salp1;
+ calp12 = calp2 * l->calp1 + salp2 * l->salp1;
+ } else {
+ /* tan(alp) = tan(alp0) * sec(sig)
+ * tan(alp2-alp1) = (tan(alp2) -tan(alp1)) / (tan(alp2)*tan(alp1)+1)
+ * = calp0 * salp0 * (csig1-csig2) / (salp0^2 + calp0^2 * csig1*csig2)
+ * If csig12 > 0, write
+ * csig1 - csig2 = ssig12 * (csig1 * ssig12 / (1 + csig12) + ssig1)
+ * else
+ * csig1 - csig2 = csig1 * (1 - csig12) + ssig12 * ssig1
+ * No need to normalize */
+ salp12 = l->calp0 * l->salp0 *
+ (csig12 <= 0 ? l->csig1 * (1 - csig12) + ssig12 * l->ssig1 :
+ ssig12 * (l->csig1 * ssig12 / (1 + csig12) + l->ssig1));
+ calp12 = sq(l->salp0) + sq(l->calp0) * l->csig1 * csig2;
+ }
+ S12 = l->c2 * atan2(salp12, calp12) + l->A4 * (B42 - l->B41);
+ }
+
+ /* In the pattern
+ *
+ * if ((outmask & GEOD_XX) && pYY)
+ * *pYY = YY;
+ *
+ * the second check "&& pYY" is redundant. It's there to make the CLang
+ * static analyzer happy.
+ */
+ if ((outmask & GEOD_LATITUDE) && plat2)
+ *plat2 = lat2;
+ if ((outmask & GEOD_LONGITUDE) && plon2)
+ *plon2 = lon2;
+ if ((outmask & GEOD_AZIMUTH) && pazi2)
+ *pazi2 = azi2;
+ if ((outmask & GEOD_DISTANCE) && ps12)
+ *ps12 = s12;
+ if ((outmask & GEOD_REDUCEDLENGTH) && pm12)
+ *pm12 = m12;
+ if (outmask & GEOD_GEODESICSCALE) {
+ if (pM12) *pM12 = M12;
+ if (pM21) *pM21 = M21;
+ }
+ if ((outmask & GEOD_AREA) && pS12)
+ *pS12 = S12;
+
+ return (flags & GEOD_ARCMODE) ? s12_a12 : sig12 / degree;
+}
+
+void geod_setdistance(struct geod_geodesicline* l, real s13) {
+ l->s13 = s13;
+ l->a13 = geod_genposition(l, GEOD_NOFLAGS, l->s13, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr);
+}
+
+static void geod_setarc(struct geod_geodesicline* l, real a13) {
+ l->a13 = a13; l->s13 = NaN;
+ geod_genposition(l, GEOD_ARCMODE, l->a13, nullptr, nullptr, nullptr, &l->s13, nullptr, nullptr, nullptr, nullptr);
+}
+
+void geod_gensetdistance(struct geod_geodesicline* l,
+ unsigned flags, real s13_a13) {
+ (flags & GEOD_ARCMODE) ?
+ geod_setarc(l, s13_a13) :
+ geod_setdistance(l, s13_a13);
+}
+
+void geod_position(const struct geod_geodesicline* l, real s12,
+ real* plat2, real* plon2, real* pazi2) {
+ geod_genposition(l, FALSE, s12, plat2, plon2, pazi2, nullptr, nullptr, nullptr, nullptr, nullptr);
+}
+
+real geod_gendirect(const struct geod_geodesic* g,
+ real lat1, real lon1, real azi1,
+ unsigned flags, real s12_a12,
+ real* plat2, real* plon2, real* pazi2,
+ real* ps12, real* pm12, real* pM12, real* pM21,
+ real* pS12) {
+ struct geod_geodesicline l;
+ unsigned outmask =
+ (plat2 ? GEOD_LATITUDE : GEOD_NONE) |
+ (plon2 ? GEOD_LONGITUDE : GEOD_NONE) |
+ (pazi2 ? GEOD_AZIMUTH : GEOD_NONE) |
+ (ps12 ? GEOD_DISTANCE : GEOD_NONE) |
+ (pm12 ? GEOD_REDUCEDLENGTH : GEOD_NONE) |
+ (pM12 || pM21 ? GEOD_GEODESICSCALE : GEOD_NONE) |
+ (pS12 ? GEOD_AREA : GEOD_NONE);
+
+ geod_lineinit(&l, g, lat1, lon1, azi1,
+ /* Automatically supply GEOD_DISTANCE_IN if necessary */
+ outmask |
+ ((flags & GEOD_ARCMODE) ? GEOD_NONE : GEOD_DISTANCE_IN));
+ return geod_genposition(&l, flags, s12_a12,
+ plat2, plon2, pazi2, ps12, pm12, pM12, pM21, pS12);
+}
+
+void geod_direct(const struct geod_geodesic* g,
+ real lat1, real lon1, real azi1,
+ real s12,
+ real* plat2, real* plon2, real* pazi2) {
+ geod_gendirect(g, lat1, lon1, azi1, GEOD_NOFLAGS, s12, plat2, plon2, pazi2,
+ nullptr, nullptr, nullptr, nullptr, nullptr);
+}
+
+static real geod_geninverse_int(const struct geod_geodesic* g,
+ real lat1, real lon1, real lat2, real lon2,
+ real* ps12,
+ real* psalp1, real* pcalp1,
+ real* psalp2, real* pcalp2,
+ real* pm12, real* pM12, real* pM21,
+ real* pS12) {
+ real s12 = 0, m12 = 0, M12 = 0, M21 = 0, S12 = 0;
+ real lon12, lon12s;
+ int latsign, lonsign, swapp;
+ real sbet1, cbet1, sbet2, cbet2, s12x = 0, m12x = 0;
+ real dn1, dn2, lam12, slam12, clam12;
+ real a12 = 0, sig12, calp1 = 0, salp1 = 0, calp2 = 0, salp2 = 0;
+ real Ca[nC];
+ boolx meridian;
+ /* somg12 > 1 marks that it needs to be calculated */
+ real omg12 = 0, somg12 = 2, comg12 = 0;
+
+ unsigned outmask =
+ (ps12 ? GEOD_DISTANCE : GEOD_NONE) |
+ (pm12 ? GEOD_REDUCEDLENGTH : GEOD_NONE) |
+ (pM12 || pM21 ? GEOD_GEODESICSCALE : GEOD_NONE) |
+ (pS12 ? GEOD_AREA : GEOD_NONE);
+
+ outmask &= OUT_ALL;
+ /* Compute longitude difference (AngDiff does this carefully). Result is
+ * in [-180, 180] but -180 is only for west-going geodesics. 180 is for
+ * east-going and meridional geodesics. */
+ lon12 = AngDiff(lon1, lon2, &lon12s);
+ /* Make longitude difference positive. */
+ lonsign = lon12 >= 0 ? 1 : -1;
+ /* If very close to being on the same half-meridian, then make it so. */
+ lon12 = lonsign * AngRound(lon12);
+ lon12s = AngRound((180 - lon12) - lonsign * lon12s);
+ lam12 = lon12 * degree;
+ if (lon12 > 90) {
+ sincosdx(lon12s, &slam12, &clam12);
+ clam12 = -clam12;
+ } else
+ sincosdx(lon12, &slam12, &clam12);
+
+ /* If really close to the equator, treat as on equator. */
+ lat1 = AngRound(LatFix(lat1));
+ lat2 = AngRound(LatFix(lat2));
+ /* Swap points so that point with higher (abs) latitude is point 1
+ * If one latitude is a nan, then it becomes lat1. */
+ swapp = fabs(lat1) < fabs(lat2) ? -1 : 1;
+ if (swapp < 0) {
+ lonsign *= -1;
+ swapx(&lat1, &lat2);
+ }
+ /* Make lat1 <= 0 */
+ latsign = lat1 < 0 ? 1 : -1;
+ lat1 *= latsign;
+ lat2 *= latsign;
+ /* Now we have
+ *
+ * 0 <= lon12 <= 180
+ * -90 <= lat1 <= 0
+ * lat1 <= lat2 <= -lat1
+ *
+ * longsign, swapp, latsign register the transformation to bring the
+ * coordinates to this canonical form. In all cases, 1 means no change was
+ * made. We make these transformations so that there are few cases to
+ * check, e.g., on verifying quadrants in atan2. In addition, this
+ * enforces some symmetries in the results returned. */
+
+ sincosdx(lat1, &sbet1, &cbet1); sbet1 *= g->f1;
+ /* Ensure cbet1 = +epsilon at poles */
+ norm2(&sbet1, &cbet1); cbet1 = maxx(tiny, cbet1);
+
+ sincosdx(lat2, &sbet2, &cbet2); sbet2 *= g->f1;
+ /* Ensure cbet2 = +epsilon at poles */
+ norm2(&sbet2, &cbet2); cbet2 = maxx(tiny, cbet2);
+
+ /* If cbet1 < -sbet1, then cbet2 - cbet1 is a sensitive measure of the
+ * |bet1| - |bet2|. Alternatively (cbet1 >= -sbet1), abs(sbet2) + sbet1 is
+ * a better measure. This logic is used in assigning calp2 in Lambda12.
+ * Sometimes these quantities vanish and in that case we force bet2 = +/-
+ * bet1 exactly. An example where is is necessary is the inverse problem
+ * 48.522876735459 0 -48.52287673545898293 179.599720456223079643
+ * which failed with Visual Studio 10 (Release and Debug) */
+
+ if (cbet1 < -sbet1) {
+ if (cbet2 == cbet1)
+ sbet2 = sbet2 < 0 ? sbet1 : -sbet1;
+ } else {
+ if (fabs(sbet2) == -sbet1)
+ cbet2 = cbet1;
+ }
+
+ dn1 = sqrt(1 + g->ep2 * sq(sbet1));
+ dn2 = sqrt(1 + g->ep2 * sq(sbet2));
+
+ meridian = lat1 == -90 || slam12 == 0;
+
+ if (meridian) {
+
+ /* Endpoints are on a single full meridian, so the geodesic might lie on
+ * a meridian. */
+
+ real ssig1, csig1, ssig2, csig2;
+ calp1 = clam12; salp1 = slam12; /* Head to the target longitude */
+ calp2 = 1; salp2 = 0; /* At the target we're heading north */
+
+ /* tan(bet) = tan(sig) * cos(alp) */
+ ssig1 = sbet1; csig1 = calp1 * cbet1;
+ ssig2 = sbet2; csig2 = calp2 * cbet2;
+
+ /* sig12 = sig2 - sig1 */
+ sig12 = atan2(maxx((real)(0), csig1 * ssig2 - ssig1 * csig2),
+ csig1 * csig2 + ssig1 * ssig2);
+ Lengths(g, g->n, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2,
+ cbet1, cbet2, &s12x, &m12x, nullptr,
+ (outmask & GEOD_GEODESICSCALE) ? &M12 : nullptr,
+ (outmask & GEOD_GEODESICSCALE) ? &M21 : nullptr,
+ Ca);
+ /* Add the check for sig12 since zero length geodesics might yield m12 <
+ * 0. Test case was
+ *
+ * echo 20.001 0 20.001 0 | GeodSolve -i
+ *
+ * In fact, we will have sig12 > pi/2 for meridional geodesic which is
+ * not a shortest path. */
+ if (sig12 < 1 || m12x >= 0) {
+ /* Need at least 2, to handle 90 0 90 180 */
+ if (sig12 < 3 * tiny)
+ sig12 = m12x = s12x = 0;
+ m12x *= g->b;
+ s12x *= g->b;
+ a12 = sig12 / degree;
+ } else
+ /* m12 < 0, i.e., prolate and too close to anti-podal */
+ meridian = FALSE;
+ }
+
+ if (!meridian &&
+ sbet1 == 0 && /* and sbet2 == 0 */
+ /* Mimic the way Lambda12 works with calp1 = 0 */
+ (g->f <= 0 || lon12s >= g->f * 180)) {
+
+ /* Geodesic runs along equator */
+ calp1 = calp2 = 0; salp1 = salp2 = 1;
+ s12x = g->a * lam12;
+ sig12 = omg12 = lam12 / g->f1;
+ m12x = g->b * sin(sig12);
+ if (outmask & GEOD_GEODESICSCALE)
+ M12 = M21 = cos(sig12);
+ a12 = lon12 / g->f1;
+
+ } else if (!meridian) {
+
+ /* Now point1 and point2 belong within a hemisphere bounded by a
+ * meridian and geodesic is neither meridional or equatorial. */
+
+ /* Figure a starting point for Newton's method */
+ real dnm = 0;
+ sig12 = InverseStart(g, sbet1, cbet1, dn1, sbet2, cbet2, dn2,
+ lam12, slam12, clam12,
+ &salp1, &calp1, &salp2, &calp2, &dnm,
+ Ca);
+
+ if (sig12 >= 0) {
+ /* Short lines (InverseStart sets salp2, calp2, dnm) */
+ s12x = sig12 * g->b * dnm;
+ m12x = sq(dnm) * g->b * sin(sig12 / dnm);
+ if (outmask & GEOD_GEODESICSCALE)
+ M12 = M21 = cos(sig12 / dnm);
+ a12 = sig12 / degree;
+ omg12 = lam12 / (g->f1 * dnm);
+ } else {
+
+ /* Newton's method. This is a straightforward solution of f(alp1) =
+ * lambda12(alp1) - lam12 = 0 with one wrinkle. f(alp) has exactly one
+ * root in the interval (0, pi) and its derivative is positive at the
+ * root. Thus f(alp) is positive for alp > alp1 and negative for alp <
+ * alp1. During the course of the iteration, a range (alp1a, alp1b) is
+ * maintained which brackets the root and with each evaluation of
+ * f(alp) the range is shrunk, if possible. Newton's method is
+ * restarted whenever the derivative of f is negative (because the new
+ * value of alp1 is then further from the solution) or if the new
+ * estimate of alp1 lies outside (0,pi); in this case, the new starting
+ * guess is taken to be (alp1a + alp1b) / 2. */
+ real ssig1 = 0, csig1 = 0, ssig2 = 0, csig2 = 0, eps = 0, domg12 = 0;
+ unsigned numit = 0;
+ /* Bracketing range */
+ real salp1a = tiny, calp1a = 1, salp1b = tiny, calp1b = -1;
+ boolx tripn = FALSE;
+ boolx tripb = FALSE;
+ for (; numit < maxit2; ++numit) {
+ /* the WGS84 test set: mean = 1.47, sd = 1.25, max = 16
+ * WGS84 and random input: mean = 2.85, sd = 0.60 */
+ real dv = 0,
+ v = Lambda12(g, sbet1, cbet1, dn1, sbet2, cbet2, dn2, salp1, calp1,
+ slam12, clam12,
+ &salp2, &calp2, &sig12, &ssig1, &csig1, &ssig2, &csig2,
+ &eps, &domg12, numit < maxit1, &dv, Ca);
+ /* 2 * tol0 is approximately 1 ulp for a number in [0, pi]. */
+ /* Reversed test to allow escape with NaNs */
+ if (tripb || !(fabs(v) >= (tripn ? 8 : 1) * tol0)) break;
+ /* Update bracketing values */
+ if (v > 0 && (numit > maxit1 || calp1/salp1 > calp1b/salp1b))
+ { salp1b = salp1; calp1b = calp1; }
+ else if (v < 0 && (numit > maxit1 || calp1/salp1 < calp1a/salp1a))
+ { salp1a = salp1; calp1a = calp1; }
+ if (numit < maxit1 && dv > 0) {
+ real
+ dalp1 = -v/dv;
+ real
+ sdalp1 = sin(dalp1), cdalp1 = cos(dalp1),
+ nsalp1 = salp1 * cdalp1 + calp1 * sdalp1;
+ if (nsalp1 > 0 && fabs(dalp1) < pi) {
+ calp1 = calp1 * cdalp1 - salp1 * sdalp1;
+ salp1 = nsalp1;
+ norm2(&salp1, &calp1);
+ /* In some regimes we don't get quadratic convergence because
+ * slope -> 0. So use convergence conditions based on epsilon
+ * instead of sqrt(epsilon). */
+ tripn = fabs(v) <= 16 * tol0;
+ continue;
+ }
+ }
+ /* Either dv was not positive or updated value was outside legal
+ * range. Use the midpoint of the bracket as the next estimate.
+ * This mechanism is not needed for the WGS84 ellipsoid, but it does
+ * catch problems with more eccentric ellipsoids. Its efficacy is
+ * such for the WGS84 test set with the starting guess set to alp1 =
+ * 90deg:
+ * the WGS84 test set: mean = 5.21, sd = 3.93, max = 24
+ * WGS84 and random input: mean = 4.74, sd = 0.99 */
+ salp1 = (salp1a + salp1b)/2;
+ calp1 = (calp1a + calp1b)/2;
+ norm2(&salp1, &calp1);
+ tripn = FALSE;
+ tripb = (fabs(salp1a - salp1) + (calp1a - calp1) < tolb ||
+ fabs(salp1 - salp1b) + (calp1 - calp1b) < tolb);
+ }
+ Lengths(g, eps, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2,
+ cbet1, cbet2, &s12x, &m12x, nullptr,
+ (outmask & GEOD_GEODESICSCALE) ? &M12 : nullptr,
+ (outmask & GEOD_GEODESICSCALE) ? &M21 : nullptr, Ca);
+ m12x *= g->b;
+ s12x *= g->b;
+ a12 = sig12 / degree;
+ if (outmask & GEOD_AREA) {
+ /* omg12 = lam12 - domg12 */
+ real sdomg12 = sin(domg12), cdomg12 = cos(domg12);
+ somg12 = slam12 * cdomg12 - clam12 * sdomg12;
+ comg12 = clam12 * cdomg12 + slam12 * sdomg12;
+ }
+ }
+ }
+
+ if (outmask & GEOD_DISTANCE)
+ s12 = 0 + s12x; /* Convert -0 to 0 */
+
+ if (outmask & GEOD_REDUCEDLENGTH)
+ m12 = 0 + m12x; /* Convert -0 to 0 */
+
+ if (outmask & GEOD_AREA) {
+ real
+ /* From Lambda12: sin(alp1) * cos(bet1) = sin(alp0) */
+ salp0 = salp1 * cbet1,
+ calp0 = hypotx(calp1, salp1 * sbet1); /* calp0 > 0 */
+ real alp12;
+ if (calp0 != 0 && salp0 != 0) {
+ real
+ /* From Lambda12: tan(bet) = tan(sig) * cos(alp) */
+ ssig1 = sbet1, csig1 = calp1 * cbet1,
+ ssig2 = sbet2, csig2 = calp2 * cbet2,
+ k2 = sq(calp0) * g->ep2,
+ eps = k2 / (2 * (1 + sqrt(1 + k2)) + k2),
+ /* Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0). */
+ A4 = sq(g->a) * calp0 * salp0 * g->e2;
+ real B41, B42;
+ norm2(&ssig1, &csig1);
+ norm2(&ssig2, &csig2);
+ C4f(g, eps, Ca);
+ B41 = SinCosSeries(FALSE, ssig1, csig1, Ca, nC4);
+ B42 = SinCosSeries(FALSE, ssig2, csig2, Ca, nC4);
+ S12 = A4 * (B42 - B41);
+ } else
+ /* Avoid problems with indeterminate sig1, sig2 on equator */
+ S12 = 0;
+
+ if (!meridian && somg12 > 1) {
+ somg12 = sin(omg12); comg12 = cos(omg12);
+ }
+
+ if (!meridian &&
+ /* omg12 < 3/4 * pi */
+ comg12 > -(real)(0.7071) && /* Long difference not too big */
+ sbet2 - sbet1 < (real)(1.75)) { /* Lat difference not too big */
+ /* Use tan(Gamma/2) = tan(omg12/2)
+ * * (tan(bet1/2)+tan(bet2/2))/(1+tan(bet1/2)*tan(bet2/2))
+ * with tan(x/2) = sin(x)/(1+cos(x)) */
+ real
+ domg12 = 1 + comg12, dbet1 = 1 + cbet1, dbet2 = 1 + cbet2;
+ alp12 = 2 * atan2( somg12 * ( sbet1 * dbet2 + sbet2 * dbet1 ),
+ domg12 * ( sbet1 * sbet2 + dbet1 * dbet2 ) );
+ } else {
+ /* alp12 = alp2 - alp1, used in atan2 so no need to normalize */
+ real
+ salp12 = salp2 * calp1 - calp2 * salp1,
+ calp12 = calp2 * calp1 + salp2 * salp1;
+ /* The right thing appears to happen if alp1 = +/-180 and alp2 = 0, viz
+ * salp12 = -0 and alp12 = -180. However this depends on the sign
+ * being attached to 0 correctly. The following ensures the correct
+ * behavior. */
+ if (salp12 == 0 && calp12 < 0) {
+ salp12 = tiny * calp1;
+ calp12 = -1;
+ }
+ alp12 = atan2(salp12, calp12);
+ }
+ S12 += g->c2 * alp12;
+ S12 *= swapp * lonsign * latsign;
+ /* Convert -0 to 0 */
+ S12 += 0;
+ }
+
+ /* Convert calp, salp to azimuth accounting for lonsign, swapp, latsign. */
+ if (swapp < 0) {
+ swapx(&salp1, &salp2);
+ swapx(&calp1, &calp2);
+ if (outmask & GEOD_GEODESICSCALE)
+ swapx(&M12, &M21);
+ }
+
+ salp1 *= swapp * lonsign; calp1 *= swapp * latsign;
+ salp2 *= swapp * lonsign; calp2 *= swapp * latsign;
+
+ if (psalp1) *psalp1 = salp1;
+ if (pcalp1) *pcalp1 = calp1;
+ if (psalp2) *psalp2 = salp2;
+ if (pcalp2) *pcalp2 = calp2;
+
+ if (outmask & GEOD_DISTANCE)
+ *ps12 = s12;
+ if (outmask & GEOD_REDUCEDLENGTH)
+ *pm12 = m12;
+ if (outmask & GEOD_GEODESICSCALE) {
+ if (pM12) *pM12 = M12;
+ if (pM21) *pM21 = M21;
+ }
+ if (outmask & GEOD_AREA)
+ *pS12 = S12;
+
+ /* Returned value in [0, 180] */
+ return a12;
+}
+
+real geod_geninverse(const struct geod_geodesic* g,
+ real lat1, real lon1, real lat2, real lon2,
+ real* ps12, real* pazi1, real* pazi2,
+ real* pm12, real* pM12, real* pM21, real* pS12) {
+ real salp1, calp1, salp2, calp2,
+ a12 = geod_geninverse_int(g, lat1, lon1, lat2, lon2, ps12,
+ &salp1, &calp1, &salp2, &calp2,
+ pm12, pM12, pM21, pS12);
+ if (pazi1) *pazi1 = atan2dx(salp1, calp1);
+ if (pazi2) *pazi2 = atan2dx(salp2, calp2);
+ return a12;
+}
+
+void geod_inverseline(struct geod_geodesicline* l,
+ const struct geod_geodesic* g,
+ real lat1, real lon1, real lat2, real lon2,
+ unsigned caps) {
+ real salp1, calp1,
+ a12 = geod_geninverse_int(g, lat1, lon1, lat2, lon2, nullptr,
+ &salp1, &calp1, nullptr, nullptr,
+ nullptr, nullptr, nullptr, nullptr),
+ azi1 = atan2dx(salp1, calp1);
+ caps = caps ? caps : GEOD_DISTANCE_IN | GEOD_LONGITUDE;
+ /* Ensure that a12 can be converted to a distance */
+ if (caps & (OUT_ALL & GEOD_DISTANCE_IN)) caps |= GEOD_DISTANCE;
+ geod_lineinit_int(l, g, lat1, lon1, azi1, salp1, calp1, caps);
+ geod_setarc(l, a12);
+}
+
+void geod_inverse(const struct geod_geodesic* g,
+ real lat1, real lon1, real lat2, real lon2,
+ real* ps12, real* pazi1, real* pazi2) {
+ geod_geninverse(g, lat1, lon1, lat2, lon2, ps12, pazi1, pazi2, nullptr, nullptr, nullptr, nullptr);
+}
+
+real SinCosSeries(boolx sinp, real sinx, real cosx, const real c[], int n) {
+ /* Evaluate
+ * y = sinp ? sum(c[i] * sin( 2*i * x), i, 1, n) :
+ * sum(c[i] * cos((2*i+1) * x), i, 0, n-1)
+ * using Clenshaw summation. N.B. c[0] is unused for sin series
+ * Approx operation count = (n + 5) mult and (2 * n + 2) add */
+ real ar, y0, y1;
+ c += (n + sinp); /* Point to one beyond last element */
+ ar = 2 * (cosx - sinx) * (cosx + sinx); /* 2 * cos(2 * x) */
+ y0 = (n & 1) ? *--c : 0; y1 = 0; /* accumulators for sum */
+ /* Now n is even */
+ n /= 2;
+ while (n--) {
+ /* Unroll loop x 2, so accumulators return to their original role */
+ y1 = ar * y0 - y1 + *--c;
+ y0 = ar * y1 - y0 + *--c;
+ }
+ return sinp
+ ? 2 * sinx * cosx * y0 /* sin(2 * x) * y0 */
+ : cosx * (y0 - y1); /* cos(x) * (y0 - y1) */
+}
+
+void Lengths(const struct geod_geodesic* g,
+ real eps, real sig12,
+ real ssig1, real csig1, real dn1,
+ real ssig2, real csig2, real dn2,
+ real cbet1, real cbet2,
+ real* ps12b, real* pm12b, real* pm0,
+ real* pM12, real* pM21,
+ /* Scratch area of the right size */
+ real Ca[]) {
+ real m0 = 0, J12 = 0, A1 = 0, A2 = 0;
+ real Cb[nC];
+
+ /* Return m12b = (reduced length)/b; also calculate s12b = distance/b,
+ * and m0 = coefficient of secular term in expression for reduced length. */
+ boolx redlp = pm12b || pm0 || pM12 || pM21;
+ if (ps12b || redlp) {
+ A1 = A1m1f(eps);
+ C1f(eps, Ca);
+ if (redlp) {
+ A2 = A2m1f(eps);
+ C2f(eps, Cb);
+ m0 = A1 - A2;
+ A2 = 1 + A2;
+ }
+ A1 = 1 + A1;
+ }
+ if (ps12b) {
+ real B1 = SinCosSeries(TRUE, ssig2, csig2, Ca, nC1) -
+ SinCosSeries(TRUE, ssig1, csig1, Ca, nC1);
+ /* Missing a factor of b */
+ *ps12b = A1 * (sig12 + B1);
+ if (redlp) {
+ real B2 = SinCosSeries(TRUE, ssig2, csig2, Cb, nC2) -
+ SinCosSeries(TRUE, ssig1, csig1, Cb, nC2);
+ J12 = m0 * sig12 + (A1 * B1 - A2 * B2);
+ }
+ } else if (redlp) {
+ /* Assume here that nC1 >= nC2 */
+ int l;
+ for (l = 1; l <= nC2; ++l)
+ Cb[l] = A1 * Ca[l] - A2 * Cb[l];
+ J12 = m0 * sig12 + (SinCosSeries(TRUE, ssig2, csig2, Cb, nC2) -
+ SinCosSeries(TRUE, ssig1, csig1, Cb, nC2));
+ }
+ if (pm0) *pm0 = m0;
+ if (pm12b)
+ /* Missing a factor of b.
+ * Add parens around (csig1 * ssig2) and (ssig1 * csig2) to ensure
+ * accurate cancellation in the case of coincident points. */
+ *pm12b = dn2 * (csig1 * ssig2) - dn1 * (ssig1 * csig2) -
+ csig1 * csig2 * J12;
+ if (pM12 || pM21) {
+ real csig12 = csig1 * csig2 + ssig1 * ssig2;
+ real t = g->ep2 * (cbet1 - cbet2) * (cbet1 + cbet2) / (dn1 + dn2);
+ if (pM12)
+ *pM12 = csig12 + (t * ssig2 - csig2 * J12) * ssig1 / dn1;
+ if (pM21)
+ *pM21 = csig12 - (t * ssig1 - csig1 * J12) * ssig2 / dn2;
+ }
+}
+
+real Astroid(real x, real y) {
+ /* Solve k^4+2*k^3-(x^2+y^2-1)*k^2-2*y^2*k-y^2 = 0 for positive root k.
+ * This solution is adapted from Geocentric::Reverse. */
+ real k;
+ real
+ p = sq(x),
+ q = sq(y),
+ r = (p + q - 1) / 6;
+ if ( !(q == 0 && r <= 0) ) {
+ real
+ /* Avoid possible division by zero when r = 0 by multiplying equations
+ * for s and t by r^3 and r, resp. */
+ S = p * q / 4, /* S = r^3 * s */
+ r2 = sq(r),
+ r3 = r * r2,
+ /* The discriminant of the quadratic equation for T3. This is zero on
+ * the evolute curve p^(1/3)+q^(1/3) = 1 */
+ disc = S * (S + 2 * r3);
+ real u = r;
+ real v, uv, w;
+ if (disc >= 0) {
+ real T3 = S + r3, T;
+ /* Pick the sign on the sqrt to maximize abs(T3). This minimizes loss
+ * of precision due to cancellation. The result is unchanged because
+ * of the way the T is used in definition of u. */
+ T3 += T3 < 0 ? -sqrt(disc) : sqrt(disc); /* T3 = (r * t)^3 */
+ /* N.B. cbrtx always returns the real root. cbrtx(-8) = -2. */
+ T = cbrtx(T3); /* T = r * t */
+ /* T can be zero; but then r2 / T -> 0. */
+ u += T + (T != 0 ? r2 / T : 0);
+ } else {
+ /* T is complex, but the way u is defined the result is real. */
+ real ang = atan2(sqrt(-disc), -(S + r3));
+ /* There are three possible cube roots. We choose the root which
+ * avoids cancellation. Note that disc < 0 implies that r < 0. */
+ u += 2 * r * cos(ang / 3);
+ }
+ v = sqrt(sq(u) + q); /* guaranteed positive */
+ /* Avoid loss of accuracy when u < 0. */
+ uv = u < 0 ? q / (v - u) : u + v; /* u+v, guaranteed positive */
+ w = (uv - q) / (2 * v); /* positive? */
+ /* Rearrange expression for k to avoid loss of accuracy due to
+ * subtraction. Division by 0 not possible because uv > 0, w >= 0. */
+ k = uv / (sqrt(uv + sq(w)) + w); /* guaranteed positive */
+ } else { /* q == 0 && r <= 0 */
+ /* y = 0 with |x| <= 1. Handle this case directly.
+ * for y small, positive root is k = abs(y)/sqrt(1-x^2) */
+ k = 0;
+ }
+ return k;
+}
+
+real InverseStart(const struct geod_geodesic* g,
+ real sbet1, real cbet1, real dn1,
+ real sbet2, real cbet2, real dn2,
+ real lam12, real slam12, real clam12,
+ real* psalp1, real* pcalp1,
+ /* Only updated if return val >= 0 */
+ real* psalp2, real* pcalp2,
+ /* Only updated for short lines */
+ real* pdnm,
+ /* Scratch area of the right size */
+ real Ca[]) {
+ real salp1 = 0, calp1 = 0, salp2 = 0, calp2 = 0, dnm = 0;
+
+ /* Return a starting point for Newton's method in salp1 and calp1 (function
+ * value is -1). If Newton's method doesn't need to be used, return also
+ * salp2 and calp2 and function value is sig12. */
+ real
+ sig12 = -1, /* Return value */
+ /* bet12 = bet2 - bet1 in [0, pi); bet12a = bet2 + bet1 in (-pi, 0] */
+ sbet12 = sbet2 * cbet1 - cbet2 * sbet1,
+ cbet12 = cbet2 * cbet1 + sbet2 * sbet1;
+ real sbet12a;
+ boolx shortline = cbet12 >= 0 && sbet12 < (real)(0.5) &&
+ cbet2 * lam12 < (real)(0.5);
+ real somg12, comg12, ssig12, csig12;
+#if defined(__GNUC__) && __GNUC__ == 4 && \
+ (__GNUC_MINOR__ < 6 || defined(__MINGW32__))
+ /* Volatile declaration needed to fix inverse cases
+ * 88.202499451857 0 -88.202499451857 179.981022032992859592
+ * 89.262080389218 0 -89.262080389218 179.992207982775375662
+ * 89.333123580033 0 -89.333123580032997687 179.99295812360148422
+ * which otherwise fail with g++ 4.4.4 x86 -O3 (Linux)
+ * and g++ 4.4.0 (mingw) and g++ 4.6.1 (tdm mingw). */
+ {
+ volatile real xx1 = sbet2 * cbet1;
+ volatile real xx2 = cbet2 * sbet1;
+ sbet12a = xx1 + xx2;
+ }
+#else
+ sbet12a = sbet2 * cbet1 + cbet2 * sbet1;
+#endif
+ if (shortline) {
+ real sbetm2 = sq(sbet1 + sbet2), omg12;
+ /* sin((bet1+bet2)/2)^2
+ * = (sbet1 + sbet2)^2 / ((sbet1 + sbet2)^2 + (cbet1 + cbet2)^2) */
+ sbetm2 /= sbetm2 + sq(cbet1 + cbet2);
+ dnm = sqrt(1 + g->ep2 * sbetm2);
+ omg12 = lam12 / (g->f1 * dnm);
+ somg12 = sin(omg12); comg12 = cos(omg12);
+ } else {
+ somg12 = slam12; comg12 = clam12;
+ }
+
+ salp1 = cbet2 * somg12;
+ calp1 = comg12 >= 0 ?
+ sbet12 + cbet2 * sbet1 * sq(somg12) / (1 + comg12) :
+ sbet12a - cbet2 * sbet1 * sq(somg12) / (1 - comg12);
+
+ ssig12 = hypotx(salp1, calp1);
+ csig12 = sbet1 * sbet2 + cbet1 * cbet2 * comg12;
+
+ if (shortline && ssig12 < g->etol2) {
+ /* really short lines */
+ salp2 = cbet1 * somg12;
+ calp2 = sbet12 - cbet1 * sbet2 *
+ (comg12 >= 0 ? sq(somg12) / (1 + comg12) : 1 - comg12);
+ norm2(&salp2, &calp2);
+ /* Set return value */
+ sig12 = atan2(ssig12, csig12);
+ } else if (fabs(g->n) > (real)(0.1) || /* No astroid calc if too eccentric */
+ csig12 >= 0 ||
+ ssig12 >= 6 * fabs(g->n) * pi * sq(cbet1)) {
+ /* Nothing to do, zeroth order spherical approximation is OK */
+ } else {
+ /* Scale lam12 and bet2 to x, y coordinate system where antipodal point
+ * is at origin and singular point is at y = 0, x = -1. */
+ real y, lamscale, betscale;
+ /* Volatile declaration needed to fix inverse case
+ * 56.320923501171 0 -56.320923501171 179.664747671772880215
+ * which otherwise fails with g++ 4.4.4 x86 -O3 */
+ volatile real x;
+ real lam12x = atan2(-slam12, -clam12); /* lam12 - pi */
+ if (g->f >= 0) { /* In fact f == 0 does not get here */
+ /* x = dlong, y = dlat */
+ {
+ real
+ k2 = sq(sbet1) * g->ep2,
+ eps = k2 / (2 * (1 + sqrt(1 + k2)) + k2);
+ lamscale = g->f * cbet1 * A3f(g, eps) * pi;
+ }
+ betscale = lamscale * cbet1;
+
+ x = lam12x / lamscale;
+ y = sbet12a / betscale;
+ } else { /* f < 0 */
+ /* x = dlat, y = dlong */
+ real
+ cbet12a = cbet2 * cbet1 - sbet2 * sbet1,
+ bet12a = atan2(sbet12a, cbet12a);
+ real m12b, m0;
+ /* In the case of lon12 = 180, this repeats a calculation made in
+ * Inverse. */
+ Lengths(g, g->n, pi + bet12a,
+ sbet1, -cbet1, dn1, sbet2, cbet2, dn2,
+ cbet1, cbet2, nullptr, &m12b, &m0, nullptr, nullptr, Ca);
+ x = -1 + m12b / (cbet1 * cbet2 * m0 * pi);
+ betscale = x < -(real)(0.01) ? sbet12a / x :
+ -g->f * sq(cbet1) * pi;
+ lamscale = betscale / cbet1;
+ y = lam12x / lamscale;
+ }
+
+ if (y > -tol1 && x > -1 - xthresh) {
+ /* strip near cut */
+ if (g->f >= 0) {
+ salp1 = minx((real)(1), -(real)(x)); calp1 = - sqrt(1 - sq(salp1));
+ } else {
+ calp1 = maxx((real)(x > -tol1 ? 0 : -1), (real)(x));
+ salp1 = sqrt(1 - sq(calp1));
+ }
+ } else {
+ /* Estimate alp1, by solving the astroid problem.
+ *
+ * Could estimate alpha1 = theta + pi/2, directly, i.e.,
+ * calp1 = y/k; salp1 = -x/(1+k); for f >= 0
+ * calp1 = x/(1+k); salp1 = -y/k; for f < 0 (need to check)
+ *
+ * However, it's better to estimate omg12 from astroid and use
+ * spherical formula to compute alp1. This reduces the mean number of
+ * Newton iterations for astroid cases from 2.24 (min 0, max 6) to 2.12
+ * (min 0 max 5). The changes in the number of iterations are as
+ * follows:
+ *
+ * change percent
+ * 1 5
+ * 0 78
+ * -1 16
+ * -2 0.6
+ * -3 0.04
+ * -4 0.002
+ *
+ * The histogram of iterations is (m = number of iterations estimating
+ * alp1 directly, n = number of iterations estimating via omg12, total
+ * number of trials = 148605):
+ *
+ * iter m n
+ * 0 148 186
+ * 1 13046 13845
+ * 2 93315 102225
+ * 3 36189 32341
+ * 4 5396 7
+ * 5 455 1
+ * 6 56 0
+ *
+ * Because omg12 is near pi, estimate work with omg12a = pi - omg12 */
+ real k = Astroid(x, y);
+ real
+ omg12a = lamscale * ( g->f >= 0 ? -x * k/(1 + k) : -y * (1 + k)/k );
+ somg12 = sin(omg12a); comg12 = -cos(omg12a);
+ /* Update spherical estimate of alp1 using omg12 instead of lam12 */
+ salp1 = cbet2 * somg12;
+ calp1 = sbet12a - cbet2 * sbet1 * sq(somg12) / (1 - comg12);
+ }
+ }
+ /* Sanity check on starting guess. Backwards check allows NaN through. */
+ if (!(salp1 <= 0))
+ norm2(&salp1, &calp1);
+ else {
+ salp1 = 1; calp1 = 0;
+ }
+
+ *psalp1 = salp1;
+ *pcalp1 = calp1;
+ if (shortline)
+ *pdnm = dnm;
+ if (sig12 >= 0) {
+ *psalp2 = salp2;
+ *pcalp2 = calp2;
+ }
+ return sig12;
+}
+
+real Lambda12(const struct geod_geodesic* g,
+ real sbet1, real cbet1, real dn1,
+ real sbet2, real cbet2, real dn2,
+ real salp1, real calp1,
+ real slam120, real clam120,
+ real* psalp2, real* pcalp2,
+ real* psig12,
+ real* pssig1, real* pcsig1,
+ real* pssig2, real* pcsig2,
+ real* peps,
+ real* pdomg12,
+ boolx diffp, real* pdlam12,
+ /* Scratch area of the right size */
+ real Ca[]) {
+ real salp2 = 0, calp2 = 0, sig12 = 0,
+ ssig1 = 0, csig1 = 0, ssig2 = 0, csig2 = 0, eps = 0,
+ domg12 = 0, dlam12 = 0;
+ real salp0, calp0;
+ real somg1, comg1, somg2, comg2, somg12, comg12, lam12;
+ real B312, eta, k2;
+
+ if (sbet1 == 0 && calp1 == 0)
+ /* Break degeneracy of equatorial line. This case has already been
+ * handled. */
+ calp1 = -tiny;
+
+ /* sin(alp1) * cos(bet1) = sin(alp0) */
+ salp0 = salp1 * cbet1;
+ calp0 = hypotx(calp1, salp1 * sbet1); /* calp0 > 0 */
+
+ /* tan(bet1) = tan(sig1) * cos(alp1)
+ * tan(omg1) = sin(alp0) * tan(sig1) = tan(omg1)=tan(alp1)*sin(bet1) */
+ ssig1 = sbet1; somg1 = salp0 * sbet1;
+ csig1 = comg1 = calp1 * cbet1;
+ norm2(&ssig1, &csig1);
+ /* norm2(&somg1, &comg1); -- don't need to normalize! */
+
+ /* Enforce symmetries in the case abs(bet2) = -bet1. Need to be careful
+ * about this case, since this can yield singularities in the Newton
+ * iteration.
+ * sin(alp2) * cos(bet2) = sin(alp0) */
+ salp2 = cbet2 != cbet1 ? salp0 / cbet2 : salp1;
+ /* calp2 = sqrt(1 - sq(salp2))
+ * = sqrt(sq(calp0) - sq(sbet2)) / cbet2
+ * and subst for calp0 and rearrange to give (choose positive sqrt
+ * to give alp2 in [0, pi/2]). */
+ calp2 = cbet2 != cbet1 || fabs(sbet2) != -sbet1 ?
+ sqrt(sq(calp1 * cbet1) +
+ (cbet1 < -sbet1 ?
+ (cbet2 - cbet1) * (cbet1 + cbet2) :
+ (sbet1 - sbet2) * (sbet1 + sbet2))) / cbet2 :
+ fabs(calp1);
+ /* tan(bet2) = tan(sig2) * cos(alp2)
+ * tan(omg2) = sin(alp0) * tan(sig2). */
+ ssig2 = sbet2; somg2 = salp0 * sbet2;
+ csig2 = comg2 = calp2 * cbet2;
+ norm2(&ssig2, &csig2);
+ /* norm2(&somg2, &comg2); -- don't need to normalize! */
+
+ /* sig12 = sig2 - sig1, limit to [0, pi] */
+ sig12 = atan2(maxx((real)(0), csig1 * ssig2 - ssig1 * csig2),
+ csig1 * csig2 + ssig1 * ssig2);
+
+ /* omg12 = omg2 - omg1, limit to [0, pi] */
+ somg12 = maxx((real)(0), comg1 * somg2 - somg1 * comg2);
+ comg12 = comg1 * comg2 + somg1 * somg2;
+ /* eta = omg12 - lam120 */
+ eta = atan2(somg12 * clam120 - comg12 * slam120,
+ comg12 * clam120 + somg12 * slam120);
+ k2 = sq(calp0) * g->ep2;
+ eps = k2 / (2 * (1 + sqrt(1 + k2)) + k2);
+ C3f(g, eps, Ca);
+ B312 = (SinCosSeries(TRUE, ssig2, csig2, Ca, nC3-1) -
+ SinCosSeries(TRUE, ssig1, csig1, Ca, nC3-1));
+ domg12 = -g->f * A3f(g, eps) * salp0 * (sig12 + B312);
+ lam12 = eta + domg12;
+
+ if (diffp) {
+ if (calp2 == 0)
+ dlam12 = - 2 * g->f1 * dn1 / sbet1;
+ else {
+ Lengths(g, eps, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2,
+ cbet1, cbet2, nullptr, &dlam12, nullptr, nullptr, nullptr, Ca);
+ dlam12 *= g->f1 / (calp2 * cbet2);
+ }
+ }
+
+ *psalp2 = salp2;
+ *pcalp2 = calp2;
+ *psig12 = sig12;
+ *pssig1 = ssig1;
+ *pcsig1 = csig1;
+ *pssig2 = ssig2;
+ *pcsig2 = csig2;
+ *peps = eps;
+ *pdomg12 = domg12;
+ if (diffp)
+ *pdlam12 = dlam12;
+
+ return lam12;
+}
+
+real A3f(const struct geod_geodesic* g, real eps) {
+ /* Evaluate A3 */
+ return polyval(nA3 - 1, g->A3x, eps);
+}
+
+void C3f(const struct geod_geodesic* g, real eps, real c[]) {
+ /* Evaluate C3 coeffs
+ * Elements c[1] through c[nC3 - 1] are set */
+ real mult = 1;
+ int o = 0, l;
+ for (l = 1; l < nC3; ++l) { /* l is index of C3[l] */
+ int m = nC3 - l - 1; /* order of polynomial in eps */
+ mult *= eps;
+ c[l] = mult * polyval(m, g->C3x + o, eps);
+ o += m + 1;
+ }
+}
+
+void C4f(const struct geod_geodesic* g, real eps, real c[]) {
+ /* Evaluate C4 coeffs
+ * Elements c[0] through c[nC4 - 1] are set */
+ real mult = 1;
+ int o = 0, l;
+ for (l = 0; l < nC4; ++l) { /* l is index of C4[l] */
+ int m = nC4 - l - 1; /* order of polynomial in eps */
+ c[l] = mult * polyval(m, g->C4x + o, eps);
+ o += m + 1;
+ mult *= eps;
+ }
+}
+
+/* The scale factor A1-1 = mean value of (d/dsigma)I1 - 1 */
+real A1m1f(real eps) {
+ static const real coeff[] = {
+ /* (1-eps)*A1-1, polynomial in eps2 of order 3 */
+ 1, 4, 64, 0, 256,
+ };
+ int m = nA1/2;
+ real t = polyval(m, coeff, sq(eps)) / coeff[m + 1];
+ return (t + eps) / (1 - eps);
+}
+
+/* The coefficients C1[l] in the Fourier expansion of B1 */
+void C1f(real eps, real c[]) {
+ static const real coeff[] = {
+ /* C1[1]/eps^1, polynomial in eps2 of order 2 */
+ -1, 6, -16, 32,
+ /* C1[2]/eps^2, polynomial in eps2 of order 2 */
+ -9, 64, -128, 2048,
+ /* C1[3]/eps^3, polynomial in eps2 of order 1 */
+ 9, -16, 768,
+ /* C1[4]/eps^4, polynomial in eps2 of order 1 */
+ 3, -5, 512,
+ /* C1[5]/eps^5, polynomial in eps2 of order 0 */
+ -7, 1280,
+ /* C1[6]/eps^6, polynomial in eps2 of order 0 */
+ -7, 2048,
+ };
+ real
+ eps2 = sq(eps),
+ d = eps;
+ int o = 0, l;
+ for (l = 1; l <= nC1; ++l) { /* l is index of C1p[l] */
+ int m = (nC1 - l) / 2; /* order of polynomial in eps^2 */
+ c[l] = d * polyval(m, coeff + o, eps2) / coeff[o + m + 1];
+ o += m + 2;
+ d *= eps;
+ }
+}
+
+/* The coefficients C1p[l] in the Fourier expansion of B1p */
+void C1pf(real eps, real c[]) {
+ static const real coeff[] = {
+ /* C1p[1]/eps^1, polynomial in eps2 of order 2 */
+ 205, -432, 768, 1536,
+ /* C1p[2]/eps^2, polynomial in eps2 of order 2 */
+ 4005, -4736, 3840, 12288,
+ /* C1p[3]/eps^3, polynomial in eps2 of order 1 */
+ -225, 116, 384,
+ /* C1p[4]/eps^4, polynomial in eps2 of order 1 */
+ -7173, 2695, 7680,
+ /* C1p[5]/eps^5, polynomial in eps2 of order 0 */
+ 3467, 7680,
+ /* C1p[6]/eps^6, polynomial in eps2 of order 0 */
+ 38081, 61440,
+ };
+ real
+ eps2 = sq(eps),
+ d = eps;
+ int o = 0, l;
+ for (l = 1; l <= nC1p; ++l) { /* l is index of C1p[l] */
+ int m = (nC1p - l) / 2; /* order of polynomial in eps^2 */
+ c[l] = d * polyval(m, coeff + o, eps2) / coeff[o + m + 1];
+ o += m + 2;
+ d *= eps;
+ }
+}
+
+/* The scale factor A2-1 = mean value of (d/dsigma)I2 - 1 */
+real A2m1f(real eps) {
+ static const real coeff[] = {
+ /* (eps+1)*A2-1, polynomial in eps2 of order 3 */
+ -11, -28, -192, 0, 256,
+ };
+ int m = nA2/2;
+ real t = polyval(m, coeff, sq(eps)) / coeff[m + 1];
+ return (t - eps) / (1 + eps);
+}
+
+/* The coefficients C2[l] in the Fourier expansion of B2 */
+void C2f(real eps, real c[]) {
+ static const real coeff[] = {
+ /* C2[1]/eps^1, polynomial in eps2 of order 2 */
+ 1, 2, 16, 32,
+ /* C2[2]/eps^2, polynomial in eps2 of order 2 */
+ 35, 64, 384, 2048,
+ /* C2[3]/eps^3, polynomial in eps2 of order 1 */
+ 15, 80, 768,
+ /* C2[4]/eps^4, polynomial in eps2 of order 1 */
+ 7, 35, 512,
+ /* C2[5]/eps^5, polynomial in eps2 of order 0 */
+ 63, 1280,
+ /* C2[6]/eps^6, polynomial in eps2 of order 0 */
+ 77, 2048,
+ };
+ real
+ eps2 = sq(eps),
+ d = eps;
+ int o = 0, l;
+ for (l = 1; l <= nC2; ++l) { /* l is index of C2[l] */
+ int m = (nC2 - l) / 2; /* order of polynomial in eps^2 */
+ c[l] = d * polyval(m, coeff + o, eps2) / coeff[o + m + 1];
+ o += m + 2;
+ d *= eps;
+ }
+}
+
+/* The scale factor A3 = mean value of (d/dsigma)I3 */
+void A3coeff(struct geod_geodesic* g) {
+ static const real coeff[] = {
+ /* A3, coeff of eps^5, polynomial in n of order 0 */
+ -3, 128,
+ /* A3, coeff of eps^4, polynomial in n of order 1 */
+ -2, -3, 64,
+ /* A3, coeff of eps^3, polynomial in n of order 2 */
+ -1, -3, -1, 16,
+ /* A3, coeff of eps^2, polynomial in n of order 2 */
+ 3, -1, -2, 8,
+ /* A3, coeff of eps^1, polynomial in n of order 1 */
+ 1, -1, 2,
+ /* A3, coeff of eps^0, polynomial in n of order 0 */
+ 1, 1,
+ };
+ int o = 0, k = 0, j;
+ for (j = nA3 - 1; j >= 0; --j) { /* coeff of eps^j */
+ int m = nA3 - j - 1 < j ? nA3 - j - 1 : j; /* order of polynomial in n */
+ g->A3x[k++] = polyval(m, coeff + o, g->n) / coeff[o + m + 1];
+ o += m + 2;
+ }
+}
+
+/* The coefficients C3[l] in the Fourier expansion of B3 */
+void C3coeff(struct geod_geodesic* g) {
+ static const real coeff[] = {
+ /* C3[1], coeff of eps^5, polynomial in n of order 0 */
+ 3, 128,
+ /* C3[1], coeff of eps^4, polynomial in n of order 1 */
+ 2, 5, 128,
+ /* C3[1], coeff of eps^3, polynomial in n of order 2 */
+ -1, 3, 3, 64,
+ /* C3[1], coeff of eps^2, polynomial in n of order 2 */
+ -1, 0, 1, 8,
+ /* C3[1], coeff of eps^1, polynomial in n of order 1 */
+ -1, 1, 4,
+ /* C3[2], coeff of eps^5, polynomial in n of order 0 */
+ 5, 256,
+ /* C3[2], coeff of eps^4, polynomial in n of order 1 */
+ 1, 3, 128,
+ /* C3[2], coeff of eps^3, polynomial in n of order 2 */
+ -3, -2, 3, 64,
+ /* C3[2], coeff of eps^2, polynomial in n of order 2 */
+ 1, -3, 2, 32,
+ /* C3[3], coeff of eps^5, polynomial in n of order 0 */
+ 7, 512,
+ /* C3[3], coeff of eps^4, polynomial in n of order 1 */
+ -10, 9, 384,
+ /* C3[3], coeff of eps^3, polynomial in n of order 2 */
+ 5, -9, 5, 192,
+ /* C3[4], coeff of eps^5, polynomial in n of order 0 */
+ 7, 512,
+ /* C3[4], coeff of eps^4, polynomial in n of order 1 */
+ -14, 7, 512,
+ /* C3[5], coeff of eps^5, polynomial in n of order 0 */
+ 21, 2560,
+ };
+ int o = 0, k = 0, l, j;
+ for (l = 1; l < nC3; ++l) { /* l is index of C3[l] */
+ for (j = nC3 - 1; j >= l; --j) { /* coeff of eps^j */
+ int m = nC3 - j - 1 < j ? nC3 - j - 1 : j; /* order of polynomial in n */
+ g->C3x[k++] = polyval(m, coeff + o, g->n) / coeff[o + m + 1];
+ o += m + 2;
+ }
+ }
+}
+
+/* The coefficients C4[l] in the Fourier expansion of I4 */
+void C4coeff(struct geod_geodesic* g) {
+ static const real coeff[] = {
+ /* C4[0], coeff of eps^5, polynomial in n of order 0 */
+ 97, 15015,
+ /* C4[0], coeff of eps^4, polynomial in n of order 1 */
+ 1088, 156, 45045,
+ /* C4[0], coeff of eps^3, polynomial in n of order 2 */
+ -224, -4784, 1573, 45045,
+ /* C4[0], coeff of eps^2, polynomial in n of order 3 */
+ -10656, 14144, -4576, -858, 45045,
+ /* C4[0], coeff of eps^1, polynomial in n of order 4 */
+ 64, 624, -4576, 6864, -3003, 15015,
+ /* C4[0], coeff of eps^0, polynomial in n of order 5 */
+ 100, 208, 572, 3432, -12012, 30030, 45045,
+ /* C4[1], coeff of eps^5, polynomial in n of order 0 */
+ 1, 9009,
+ /* C4[1], coeff of eps^4, polynomial in n of order 1 */
+ -2944, 468, 135135,
+ /* C4[1], coeff of eps^3, polynomial in n of order 2 */
+ 5792, 1040, -1287, 135135,
+ /* C4[1], coeff of eps^2, polynomial in n of order 3 */
+ 5952, -11648, 9152, -2574, 135135,
+ /* C4[1], coeff of eps^1, polynomial in n of order 4 */
+ -64, -624, 4576, -6864, 3003, 135135,
+ /* C4[2], coeff of eps^5, polynomial in n of order 0 */
+ 8, 10725,
+ /* C4[2], coeff of eps^4, polynomial in n of order 1 */
+ 1856, -936, 225225,
+ /* C4[2], coeff of eps^3, polynomial in n of order 2 */
+ -8448, 4992, -1144, 225225,
+ /* C4[2], coeff of eps^2, polynomial in n of order 3 */
+ -1440, 4160, -4576, 1716, 225225,
+ /* C4[3], coeff of eps^5, polynomial in n of order 0 */
+ -136, 63063,
+ /* C4[3], coeff of eps^4, polynomial in n of order 1 */
+ 1024, -208, 105105,
+ /* C4[3], coeff of eps^3, polynomial in n of order 2 */
+ 3584, -3328, 1144, 315315,
+ /* C4[4], coeff of eps^5, polynomial in n of order 0 */
+ -128, 135135,
+ /* C4[4], coeff of eps^4, polynomial in n of order 1 */
+ -2560, 832, 405405,
+ /* C4[5], coeff of eps^5, polynomial in n of order 0 */
+ 128, 99099,
+ };
+ int o = 0, k = 0, l, j;
+ for (l = 0; l < nC4; ++l) { /* l is index of C4[l] */
+ for (j = nC4 - 1; j >= l; --j) { /* coeff of eps^j */
+ int m = nC4 - j - 1; /* order of polynomial in n */
+ g->C4x[k++] = polyval(m, coeff + o, g->n) / coeff[o + m + 1];
+ o += m + 2;
+ }
+ }
+}
+
+int transit(real lon1, real lon2) {
+ real lon12;
+ /* Return 1 or -1 if crossing prime meridian in east or west direction.
+ * Otherwise return zero. */
+ /* Compute lon12 the same way as Geodesic::Inverse. */
+ lon1 = AngNormalize(lon1);
+ lon2 = AngNormalize(lon2);
+ lon12 = AngDiff(lon1, lon2, nullptr);
+ return lon1 <= 0 && lon2 > 0 && lon12 > 0 ? 1 :
+ (lon2 <= 0 && lon1 > 0 && lon12 < 0 ? -1 : 0);
+}
+
+int transitdirect(real lon1, real lon2) {
+#if HAVE_C99_MATH
+ lon1 = remainder(lon1, (real)(720));
+ lon2 = remainder(lon2, (real)(720));
+ return ( (lon2 <= 0 && lon2 > -360 ? 1 : 0) -
+ (lon1 <= 0 && lon1 > -360 ? 1 : 0) );
+#else
+ lon1 = fmod(lon1, (real)(720));
+ lon2 = fmod(lon2, (real)(720));
+ return ( ((lon2 <= 0 && lon2 > -360) || lon2 > 360 ? 1 : 0) -
+ ((lon1 <= 0 && lon1 > -360) || lon1 > 360 ? 1 : 0) );
+#endif
+}
+
+void accini(real s[]) {
+ /* Initialize an accumulator; this is an array with two elements. */
+ s[0] = s[1] = 0;
+}
+
+void acccopy(const real s[], real t[]) {
+ /* Copy an accumulator; t = s. */
+ t[0] = s[0]; t[1] = s[1];
+}
+
+void accadd(real s[], real y) {
+ /* Add y to an accumulator. */
+ real u, z = sumx(y, s[1], &u);
+ s[0] = sumx(z, s[0], &s[1]);
+ if (s[0] == 0)
+ s[0] = u;
+ else
+ s[1] = s[1] + u;
+}
+
+real accsum(const real s[], real y) {
+ /* Return accumulator + y (but don't add to accumulator). */
+ real t[2];
+ acccopy(s, t);
+ accadd(t, y);
+ return t[0];
+}
+
+void accneg(real s[]) {
+ /* Negate an accumulator. */
+ s[0] = -s[0]; s[1] = -s[1];
+}
+
+void geod_polygon_init(struct geod_polygon* p, boolx polylinep) {
+ p->polyline = (polylinep != 0);
+ geod_polygon_clear(p);
+}
+
+void geod_polygon_clear(struct geod_polygon* p) {
+ p->lat0 = p->lon0 = p->lat = p->lon = NaN;
+ accini(p->P);
+ accini(p->A);
+ p->num = p->crossings = 0;
+}
+
+void geod_polygon_addpoint(const struct geod_geodesic* g,
+ struct geod_polygon* p,
+ real lat, real lon) {
+ lon = AngNormalize(lon);
+ if (p->num == 0) {
+ p->lat0 = p->lat = lat;
+ p->lon0 = p->lon = lon;
+ } else {
+ real s12, S12 = 0; /* Initialize S12 to stop Visual Studio warning */
+ geod_geninverse(g, p->lat, p->lon, lat, lon,
+ &s12, nullptr, nullptr, nullptr, nullptr, nullptr, p->polyline ? nullptr : &S12);
+ accadd(p->P, s12);
+ if (!p->polyline) {
+ accadd(p->A, S12);
+ p->crossings += transit(p->lon, lon);
+ }
+ p->lat = lat; p->lon = lon;
+ }
+ ++p->num;
+}
+
+void geod_polygon_addedge(const struct geod_geodesic* g,
+ struct geod_polygon* p,
+ real azi, real s) {
+ if (p->num) { /* Do nothing is num is zero */
+ /* Initialize S12 to stop Visual Studio warning. Initialization of lat and
+ * lon is to make CLang static analyzer happy. */
+ real lat = 0, lon = 0, S12 = 0;
+ geod_gendirect(g, p->lat, p->lon, azi, GEOD_LONG_UNROLL, s,
+ &lat, &lon, nullptr,
+ nullptr, nullptr, nullptr, nullptr, p->polyline ? nullptr : &S12);
+ accadd(p->P, s);
+ if (!p->polyline) {
+ accadd(p->A, S12);
+ p->crossings += transitdirect(p->lon, lon);
+ }
+ p->lat = lat; p->lon = lon;
+ ++p->num;
+ }
+}
+
+unsigned geod_polygon_compute(const struct geod_geodesic* g,
+ const struct geod_polygon* p,
+ boolx reverse, boolx sign,
+ real* pA, real* pP) {
+ real s12, S12, t[2], area0;
+ int crossings;
+ if (p->num < 2) {
+ if (pP) *pP = 0;
+ if (!p->polyline && pA) *pA = 0;
+ return p->num;
+ }
+ if (p->polyline) {
+ if (pP) *pP = p->P[0];
+ return p->num;
+ }
+ geod_geninverse(g, p->lat, p->lon, p->lat0, p->lon0,
+ &s12, nullptr, nullptr, nullptr, nullptr, nullptr, &S12);
+ if (pP) *pP = accsum(p->P, s12);
+ acccopy(p->A, t);
+ accadd(t, S12);
+ crossings = p->crossings + transit(p->lon, p->lon0);
+ area0 = 4 * pi * g->c2;
+ if (crossings & 1)
+ accadd(t, (t[0] < 0 ? 1 : -1) * area0/2);
+ /* area is with the clockwise sense. If !reverse convert to
+ * counter-clockwise convention. */
+ if (!reverse)
+ accneg(t);
+ /* If sign put area in (-area0/2, area0/2], else put area in [0, area0) */
+ if (sign) {
+ if (t[0] > area0/2)
+ accadd(t, -area0);
+ else if (t[0] <= -area0/2)
+ accadd(t, +area0);
+ } else {
+ if (t[0] >= area0)
+ accadd(t, -area0);
+ else if (t[0] < 0)
+ accadd(t, +area0);
+ }
+ if (pA) *pA = 0 + t[0];
+ return p->num;
+}
+
+unsigned geod_polygon_testpoint(const struct geod_geodesic* g,
+ const struct geod_polygon* p,
+ real lat, real lon,
+ boolx reverse, boolx sign,
+ real* pA, real* pP) {
+ real perimeter, tempsum, area0;
+ int crossings, i;
+ unsigned num = p->num + 1;
+ if (num == 1) {
+ if (pP) *pP = 0;
+ if (!p->polyline && pA) *pA = 0;
+ return num;
+ }
+ perimeter = p->P[0];
+ tempsum = p->polyline ? 0 : p->A[0];
+ crossings = p->crossings;
+ for (i = 0; i < (p->polyline ? 1 : 2); ++i) {
+ real s12, S12 = 0; /* Initialize S12 to stop Visual Studio warning */
+ geod_geninverse(g,
+ i == 0 ? p->lat : lat, i == 0 ? p->lon : lon,
+ i != 0 ? p->lat0 : lat, i != 0 ? p->lon0 : lon,
+ &s12, nullptr, nullptr, nullptr, nullptr, nullptr, p->polyline ? nullptr : &S12);
+ perimeter += s12;
+ if (!p->polyline) {
+ tempsum += S12;
+ crossings += transit(i == 0 ? p->lon : lon,
+ i != 0 ? p->lon0 : lon);
+ }
+ }
+
+ if (pP) *pP = perimeter;
+ if (p->polyline)
+ return num;
+
+ area0 = 4 * pi * g->c2;
+ if (crossings & 1)
+ tempsum += (tempsum < 0 ? 1 : -1) * area0/2;
+ /* area is with the clockwise sense. If !reverse convert to
+ * counter-clockwise convention. */
+ if (!reverse)
+ tempsum *= -1;
+ /* If sign put area in (-area0/2, area0/2], else put area in [0, area0) */
+ if (sign) {
+ if (tempsum > area0/2)
+ tempsum -= area0;
+ else if (tempsum <= -area0/2)
+ tempsum += area0;
+ } else {
+ if (tempsum >= area0)
+ tempsum -= area0;
+ else if (tempsum < 0)
+ tempsum += area0;
+ }
+ if (pA) *pA = 0 + tempsum;
+ return num;
+}
+
+unsigned geod_polygon_testedge(const struct geod_geodesic* g,
+ const struct geod_polygon* p,
+ real azi, real s,
+ boolx reverse, boolx sign,
+ real* pA, real* pP) {
+ real perimeter, tempsum, area0;
+ int crossings;
+ unsigned num = p->num + 1;
+ if (num == 1) { /* we don't have a starting point! */
+ if (pP) *pP = NaN;
+ if (!p->polyline && pA) *pA = NaN;
+ return 0;
+ }
+ perimeter = p->P[0] + s;
+ if (p->polyline) {
+ if (pP) *pP = perimeter;
+ return num;
+ }
+
+ tempsum = p->A[0];
+ crossings = p->crossings;
+ {
+ /* Initialization of lat, lon, and S12 is to make CLang static analyzer
+ happy. */
+ real lat = 0, lon = 0, s12, S12 = 0;
+ geod_gendirect(g, p->lat, p->lon, azi, GEOD_LONG_UNROLL, s,
+ &lat, &lon, nullptr,
+ nullptr, nullptr, nullptr, nullptr, &S12);
+ tempsum += S12;
+ crossings += transitdirect(p->lon, lon);
+ geod_geninverse(g, lat, lon, p->lat0, p->lon0,
+ &s12, nullptr, nullptr, nullptr, nullptr, nullptr, &S12);
+ perimeter += s12;
+ tempsum += S12;
+ crossings += transit(lon, p->lon0);
+ }
+
+ area0 = 4 * pi * g->c2;
+ if (crossings & 1)
+ tempsum += (tempsum < 0 ? 1 : -1) * area0/2;
+ /* area is with the clockwise sense. If !reverse convert to
+ * counter-clockwise convention. */
+ if (!reverse)
+ tempsum *= -1;
+ /* If sign put area in (-area0/2, area0/2], else put area in [0, area0) */
+ if (sign) {
+ if (tempsum > area0/2)
+ tempsum -= area0;
+ else if (tempsum <= -area0/2)
+ tempsum += area0;
+ } else {
+ if (tempsum >= area0)
+ tempsum -= area0;
+ else if (tempsum < 0)
+ tempsum += area0;
+ }
+ if (pP) *pP = perimeter;
+ if (pA) *pA = 0 + tempsum;
+ return num;
+}
+
+void geod_polygonarea(const struct geod_geodesic* g,
+ real lats[], real lons[], int n,
+ real* pA, real* pP) {
+ int i;
+ struct geod_polygon p;
+ geod_polygon_init(&p, FALSE);
+ for (i = 0; i < n; ++i)
+ geod_polygon_addpoint(g, &p, lats[i], lons[i]);
+ geod_polygon_compute(g, &p, FALSE, TRUE, pA, pP);
+}
+
+/** @endcond */