aboutsummaryrefslogtreecommitdiff
path: root/src/projections/tmerc.cpp
diff options
context:
space:
mode:
authorKristian Evers <kristianevers@gmail.com>2019-02-11 23:58:16 +0100
committerGitHub <noreply@github.com>2019-02-11 23:58:16 +0100
commit5141b3908e59a26c9fe66de94bb7388bff741b58 (patch)
tree9cf9a136c9dd72e2732ed38470b6c84b558f4b73 /src/projections/tmerc.cpp
parent593fcc4b57d0f5c3a46134add142ee8d9316aec6 (diff)
downloadPROJ-5141b3908e59a26c9fe66de94bb7388bff741b58.tar.gz
PROJ-5141b3908e59a26c9fe66de94bb7388bff741b58.zip
Make tmerc an alias for etmerc. (#1234)
* Make tmerc an alias for etmerc This switches the algorithm used in tmerc to the Poder/Engsager tmerc algorithm. The original tmerc algorithm of Evenden/Snyder origin can still be accessed by adding the +approx flag when initializing a tmerc projection. The +approx flag can also be used when initializing UTM projections, in which case the Evenden/Snyder algorithm is used as well. If a tmerc projection is instantiated on a spherical earth the Evenden/Snyder algorithm is used as well since the Poder/Engsager algorithm is only defined on the ellipsoid. +proj=etmerc can still be instantiated for backwards compatibility reasons. Co-authored-by: Kristian Evers <kristianevers@gmail.com> Co-authored-by: Even Rouault <even.rouault@spatialys.com>
Diffstat (limited to 'src/projections/tmerc.cpp')
-rw-r--r--src/projections/tmerc.cpp423
1 files changed, 399 insertions, 24 deletions
diff --git a/src/projections/tmerc.cpp b/src/projections/tmerc.cpp
index d1938116..c91c5174 100644
--- a/src/projections/tmerc.cpp
+++ b/src/projections/tmerc.cpp
@@ -1,3 +1,15 @@
+/*
+* Transverse Mercator implementations
+*
+* In this file two transverse mercator implementations are found. One of Gerald
+* Evenden/John Snyder origin and one of Knud Poder/Karsten Engsager origin. The
+* former is regarded as "approximate" in the following and the latter is "exact".
+* This word choice has been made to distinguish between the two algorithms, where
+* the Evenden/Snyder implementation is the faster, less accurate implementation
+* and the Poder/Engsager algorithm is a slightly slower, but more accurate
+* implementation.
+*/
+
#define PJ_LIB__
#include <errno.h>
@@ -5,18 +17,32 @@
#include "proj.h"
#include "proj_internal.h"
+#include "proj_math.h"
-PROJ_HEAD(tmerc, "Transverse Mercator") "\n\tCyl, Sph&Ell";
+PROJ_HEAD(tmerc, "Transverse Mercator") "\n\tCyl, Sph&Ell\n\tapprox";
+PROJ_HEAD(etmerc, "Extended Transverse Mercator") "\n\tCyl, Sph";
+PROJ_HEAD(utm, "Universal Transverse Mercator (UTM)") "\n\tCyl, Sph\n\tzone= south approx";
namespace { // anonymous namespace
-struct pj_opaque {
+struct pj_opaque_approx {
double esp;
double ml0;
double *en;
};
+
+struct pj_opaque_exact {
+ double Qn; /* Merid. quad., scaled to the projection */
+ double Zb; /* Radius vector in polar coord. systems */
+ double cgb[6]; /* Constants for Gauss -> Geo lat */
+ double cbg[6]; /* Constants for Geo lat -> Gauss */
+ double utg[6]; /* Constants for transv. merc. -> geo */
+ double gtu[6]; /* Constants for geo -> transv. merc. */
+};
+
} // anonymous namespace
+/* Constants for "approximate" transverse mercator */
#define EPS10 1.e-10
#define FC1 1.
#define FC2 .5
@@ -27,10 +53,18 @@ struct pj_opaque {
#define FC7 .02380952380952380952
#define FC8 .01785714285714285714
+/* Constant for "exact" transverse mercator */
+#define PROJ_ETMERC_ORDER 6
-static PJ_XY e_forward (PJ_LP lp, PJ *P) { /* Ellipsoidal, forward */
+/*****************************************************************************/
+//
+// Approximate Transverse Mercator functions
+//
+/*****************************************************************************/
+
+static PJ_XY approx_e_fwd (PJ_LP lp, PJ *P) {
PJ_XY xy = {0.0, 0.0};
- struct pj_opaque *Q = static_cast<struct pj_opaque*>(P->opaque);
+ struct pj_opaque_approx *Q = static_cast<struct pj_opaque_approx*>(P->opaque);
double al, als, n, cosphi, sinphi, t;
/*
@@ -70,7 +104,7 @@ static PJ_XY e_forward (PJ_LP lp, PJ *P) { /* Ellipsoidal, forward */
}
-static PJ_XY s_forward (PJ_LP lp, PJ *P) { /* Spheroidal, forward */
+static PJ_XY approx_s_fwd (PJ_LP lp, PJ *P) {
PJ_XY xy = {0.0,0.0};
double b, cosphi;
@@ -95,7 +129,7 @@ static PJ_XY s_forward (PJ_LP lp, PJ *P) { /* Spheroidal, forward */
return xy;
}
- xy.x = static_cast<struct pj_opaque*>(P->opaque)->ml0 * log ((1. + b) / (1. - b));
+ xy.x = static_cast<struct pj_opaque_approx*>(P->opaque)->ml0 * log ((1. + b) / (1. - b));
xy.y = cosphi * cos (lp.lam) / sqrt (1. - b * b);
b = fabs ( xy.y );
@@ -110,14 +144,14 @@ static PJ_XY s_forward (PJ_LP lp, PJ *P) { /* Spheroidal, forward */
if (lp.phi < 0.)
xy.y = -xy.y;
- xy.y = static_cast<struct pj_opaque*>(P->opaque)->esp * (xy.y - P->phi0);
+ xy.y = static_cast<struct pj_opaque_approx*>(P->opaque)->esp * (xy.y - P->phi0);
return xy;
}
-static PJ_LP e_inverse (PJ_XY xy, PJ *P) { /* Ellipsoidal, inverse */
+static PJ_LP approx_e_inv (PJ_XY xy, PJ *P) {
PJ_LP lp = {0.0,0.0};
- struct pj_opaque *Q = static_cast<struct pj_opaque*>(P->opaque);
+ struct pj_opaque_approx *Q = static_cast<struct pj_opaque_approx*>(P->opaque);
double n, con, cosphi, d, ds, sinphi, t;
lp.phi = pj_inv_mlfn(P->ctx, Q->ml0 + xy.y / P->k0, P->es, Q->en);
@@ -149,13 +183,13 @@ static PJ_LP e_inverse (PJ_XY xy, PJ *P) { /* Ellipsoidal, inverse */
}
-static PJ_LP s_inverse (PJ_XY xy, PJ *P) { /* Spheroidal, inverse */
+static PJ_LP approx_s_inv (PJ_XY xy, PJ *P) {
PJ_LP lp = {0.0, 0.0};
double h, g;
- h = exp(xy.x / static_cast<struct pj_opaque*>(P->opaque)->esp);
+ h = exp(xy.x / static_cast<struct pj_opaque_approx*>(P->opaque)->esp);
g = .5 * (h - 1. / h);
- h = cos (P->phi0 + xy.y / static_cast<struct pj_opaque*>(P->opaque)->esp);
+ h = cos (P->phi0 + xy.y / static_cast<struct pj_opaque_approx*>(P->opaque)->esp);
lp.phi = asin(sqrt((1. - h * h) / (1. + g * g)));
/* Make sure that phi is on the correct hemisphere when false northing is used */
@@ -166,45 +200,386 @@ static PJ_LP s_inverse (PJ_XY xy, PJ *P) { /* Spheroidal, inverse */
}
-static PJ *destructor(PJ *P, int errlev) { /* Destructor */
+static PJ *destructor_approx(PJ *P, int errlev) {
if (nullptr==P)
return nullptr;
if (nullptr==P->opaque)
return pj_default_destructor(P, errlev);
- pj_dealloc (static_cast<struct pj_opaque*>(P->opaque)->en);
+ pj_dealloc (static_cast<struct pj_opaque_approx*>(P->opaque)->en);
return pj_default_destructor(P, errlev);
}
-static PJ *setup(PJ *P) { /* general initialization */
- struct pj_opaque *Q = static_cast<struct pj_opaque*>(P->opaque);
+static PJ *setup_approx(PJ *P) {
+ struct pj_opaque_approx *Q = static_cast<struct pj_opaque_approx*>(P->opaque);
+
+ P->destructor = destructor_approx;
+
if (P->es != 0.0) {
if (!(Q->en = pj_enfn(P->es)))
return pj_default_destructor(P, ENOMEM);
Q->ml0 = pj_mlfn(P->phi0, sin(P->phi0), cos(P->phi0), Q->en);
Q->esp = P->es / (1. - P->es);
- P->inv = e_inverse;
- P->fwd = e_forward;
+ P->inv = approx_e_inv;
+ P->fwd = approx_e_fwd;
} else {
Q->esp = P->k0;
Q->ml0 = .5 * Q->esp;
- P->inv = s_inverse;
- P->fwd = s_forward;
+ P->inv = approx_s_inv;
+ P->fwd = approx_s_fwd;
}
return P;
}
+
+/*****************************************************************************/
+//
+// Exact Transverse Mercator functions
+//
+//
+// The code in this file is largly based upon procedures:
+//
+// Written by: Knud Poder and Karsten Engsager
+//
+// Based on math from: R.Koenig and K.H. Weise, "Mathematische
+// Grundlagen der hoeheren Geodaesie und Kartographie,
+// Springer-Verlag, Berlin/Goettingen" Heidelberg, 1951.
+//
+// Modified and used here by permission of Reference Networks
+// Division, Kort og Matrikelstyrelsen (KMS), Copenhagen, Denmark
+//
+/*****************************************************************************/
+
+/* Helper functios for "exact" transverse mercator */
+#ifdef _GNU_SOURCE
+ inline
+#endif
+static double gatg(double *p1, int len_p1, double B) {
+ double *p;
+ double h = 0, h1, h2 = 0, cos_2B;
+
+ cos_2B = 2*cos(2*B);
+ p = p1 + len_p1;
+ h1 = *--p;
+ while (p - p1) {
+ h = -h2 + cos_2B*h1 + *--p;
+ h2 = h1;
+ h1 = h;
+ }
+ return (B + h*sin(2*B));
+}
+
+/* Complex Clenshaw summation */
+#ifdef _GNU_SOURCE
+ inline
+#endif
+static double clenS(double *a, int size, double arg_r, double arg_i, double *R, double *I) {
+ double *p, r, i, hr, hr1, hr2, hi, hi1, hi2;
+ double sin_arg_r, cos_arg_r, sinh_arg_i, cosh_arg_i;
+
+ /* arguments */
+ p = a + size;
+#ifdef _GNU_SOURCE
+ sincos(arg_r, &sin_arg_r, &cos_arg_r);
+#else
+ sin_arg_r = sin(arg_r);
+ cos_arg_r = cos(arg_r);
+#endif
+ sinh_arg_i = sinh(arg_i);
+ cosh_arg_i = cosh(arg_i);
+ r = 2*cos_arg_r*cosh_arg_i;
+ i = -2*sin_arg_r*sinh_arg_i;
+
+ /* summation loop */
+ hi1 = hr1 = hi = 0;
+ hr = *--p;
+ for (; a - p;) {
+ hr2 = hr1;
+ hi2 = hi1;
+ hr1 = hr;
+ hi1 = hi;
+ hr = -hr2 + r*hr1 - i*hi1 + *--p;
+ hi = -hi2 + i*hr1 + r*hi1;
+ }
+
+ r = sin_arg_r*cosh_arg_i;
+ i = cos_arg_r*sinh_arg_i;
+ *R = r*hr - i*hi;
+ *I = r*hi + i*hr;
+ return *R;
+}
+
+
+/* Real Clenshaw summation */
+static double clens(double *a, int size, double arg_r) {
+ double *p, r, hr, hr1, hr2, cos_arg_r;
+
+ p = a + size;
+ cos_arg_r = cos(arg_r);
+ r = 2*cos_arg_r;
+
+ /* summation loop */
+ hr1 = 0;
+ hr = *--p;
+ for (; a - p;) {
+ hr2 = hr1;
+ hr1 = hr;
+ hr = -hr2 + r*hr1 + *--p;
+ }
+ return sin (arg_r)*hr;
+}
+
+/* Ellipsoidal, forward */
+static PJ_XY exact_e_fwd (PJ_LP lp, PJ *P) {
+ PJ_XY xy = {0.0,0.0};
+ struct pj_opaque_exact *Q = static_cast<struct pj_opaque_exact*>(P->opaque);
+ double sin_Cn, cos_Cn, cos_Ce, sin_Ce, dCn, dCe;
+ double Cn = lp.phi, Ce = lp.lam;
+
+ /* ell. LAT, LNG -> Gaussian LAT, LNG */
+ Cn = gatg (Q->cbg, PROJ_ETMERC_ORDER, Cn);
+ /* Gaussian LAT, LNG -> compl. sph. LAT */
+#ifdef _GNU_SOURCE
+ sincos (Cn, &sin_Cn, &cos_Cn);
+ sincos (Ce, &sin_Ce, &cos_Ce);
+#else
+ sin_Cn = sin (Cn);
+ cos_Cn = cos (Cn);
+ sin_Ce = sin (Ce);
+ cos_Ce = cos (Ce);
+#endif
+
+ Cn = atan2 (sin_Cn, cos_Ce*cos_Cn);
+ Ce = atan2 (sin_Ce*cos_Cn, hypot (sin_Cn, cos_Cn*cos_Ce));
+
+ /* compl. sph. N, E -> ell. norm. N, E */
+ Ce = asinh ( tan (Ce) ); /* Replaces: Ce = log(tan(FORTPI + Ce*0.5)); */
+ Cn += clenS (Q->gtu, PROJ_ETMERC_ORDER, 2*Cn, 2*Ce, &dCn, &dCe);
+ Ce += dCe;
+ if (fabs (Ce) <= 2.623395162778) {
+ xy.y = Q->Qn * Cn + Q->Zb; /* Northing */
+ xy.x = Q->Qn * Ce; /* Easting */
+ } else
+ xy.x = xy.y = HUGE_VAL;
+ return xy;
+}
+
+
+/* Ellipsoidal, inverse */
+static PJ_LP exact_e_inv (PJ_XY xy, PJ *P) {
+ PJ_LP lp = {0.0,0.0};
+ struct pj_opaque_exact *Q = static_cast<struct pj_opaque_exact*>(P->opaque);
+ double sin_Cn, cos_Cn, cos_Ce, sin_Ce, dCn, dCe;
+ double Cn = xy.y, Ce = xy.x;
+
+ /* normalize N, E */
+ Cn = (Cn - Q->Zb)/Q->Qn;
+ Ce = Ce/Q->Qn;
+
+ if (fabs(Ce) <= 2.623395162778) { /* 150 degrees */
+ /* norm. N, E -> compl. sph. LAT, LNG */
+ Cn += clenS(Q->utg, PROJ_ETMERC_ORDER, 2*Cn, 2*Ce, &dCn, &dCe);
+ Ce += dCe;
+ Ce = atan (sinh (Ce)); /* Replaces: Ce = 2*(atan(exp(Ce)) - FORTPI); */
+ /* compl. sph. LAT -> Gaussian LAT, LNG */
+#ifdef _GNU_SOURCE
+ sincos (Cn, &sin_Cn, &cos_Cn);
+ sincos (Ce, &sin_Ce, &cos_Ce);
+#else
+ sin_Cn = sin (Cn);
+ cos_Cn = cos (Cn);
+ sin_Ce = sin (Ce);
+ cos_Ce = cos (Ce);
+#endif
+ Ce = atan2 (sin_Ce, cos_Ce*cos_Cn);
+ Cn = atan2 (sin_Cn*cos_Ce, hypot (sin_Ce, cos_Ce*cos_Cn));
+ /* Gaussian LAT, LNG -> ell. LAT, LNG */
+ lp.phi = gatg (Q->cgb, PROJ_ETMERC_ORDER, Cn);
+ lp.lam = Ce;
+ }
+ else
+ lp.phi = lp.lam = HUGE_VAL;
+ return lp;
+}
+
+static PJ *setup_exact(PJ *P) {
+ double f, n, np, Z;
+ struct pj_opaque_exact *Q = static_cast<struct pj_opaque_exact*>(P->opaque);
+
+ if (P->es <= 0) {
+ return pj_default_destructor(P, PJD_ERR_ELLIPSOID_USE_REQUIRED);
+ }
+
+ /* flattening */
+ f = P->es / (1 + sqrt (1 - P->es)); /* Replaces: f = 1 - sqrt(1-P->es); */
+
+ /* third flattening */
+ np = n = f/(2 - f);
+
+ /* COEF. OF TRIG SERIES GEO <-> GAUSS */
+ /* cgb := Gaussian -> Geodetic, KW p190 - 191 (61) - (62) */
+ /* cbg := Geodetic -> Gaussian, KW p186 - 187 (51) - (52) */
+ /* PROJ_ETMERC_ORDER = 6th degree : Engsager and Poder: ICC2007 */
+
+ Q->cgb[0] = n*( 2 + n*(-2/3.0 + n*(-2 + n*(116/45.0 + n*(26/45.0 +
+ n*(-2854/675.0 ))))));
+ Q->cbg[0] = n*(-2 + n*( 2/3.0 + n*( 4/3.0 + n*(-82/45.0 + n*(32/45.0 +
+ n*( 4642/4725.0))))));
+ np *= n;
+ Q->cgb[1] = np*(7/3.0 + n*( -8/5.0 + n*(-227/45.0 + n*(2704/315.0 +
+ n*( 2323/945.0)))));
+ Q->cbg[1] = np*(5/3.0 + n*(-16/15.0 + n*( -13/9.0 + n*( 904/315.0 +
+ n*(-1522/945.0)))));
+ np *= n;
+ /* n^5 coeff corrected from 1262/105 -> -1262/105 */
+ Q->cgb[2] = np*( 56/15.0 + n*(-136/35.0 + n*(-1262/105.0 +
+ n*( 73814/2835.0))));
+ Q->cbg[2] = np*(-26/15.0 + n*( 34/21.0 + n*( 8/5.0 +
+ n*(-12686/2835.0))));
+ np *= n;
+ /* n^5 coeff corrected from 322/35 -> 332/35 */
+ Q->cgb[3] = np*(4279/630.0 + n*(-332/35.0 + n*(-399572/14175.0)));
+ Q->cbg[3] = np*(1237/630.0 + n*( -12/5.0 + n*( -24832/14175.0)));
+ np *= n;
+ Q->cgb[4] = np*(4174/315.0 + n*(-144838/6237.0 ));
+ Q->cbg[4] = np*(-734/315.0 + n*( 109598/31185.0));
+ np *= n;
+ Q->cgb[5] = np*(601676/22275.0 );
+ Q->cbg[5] = np*(444337/155925.0);
+
+ /* Constants of the projections */
+ /* Transverse Mercator (UTM, ITM, etc) */
+ np = n*n;
+ /* Norm. mer. quad, K&W p.50 (96), p.19 (38b), p.5 (2) */
+ Q->Qn = P->k0/(1 + n) * (1 + np*(1/4.0 + np*(1/64.0 + np/256.0)));
+ /* coef of trig series */
+ /* utg := ell. N, E -> sph. N, E, KW p194 (65) */
+ /* gtu := sph. N, E -> ell. N, E, KW p196 (69) */
+ Q->utg[0] = n*(-0.5 + n*( 2/3.0 + n*(-37/96.0 + n*( 1/360.0 +
+ n*( 81/512.0 + n*(-96199/604800.0))))));
+ Q->gtu[0] = n*( 0.5 + n*(-2/3.0 + n*( 5/16.0 + n*(41/180.0 +
+ n*(-127/288.0 + n*( 7891/37800.0 ))))));
+ Q->utg[1] = np*(-1/48.0 + n*(-1/15.0 + n*(437/1440.0 + n*(-46/105.0 +
+ n*( 1118711/3870720.0)))));
+ Q->gtu[1] = np*(13/48.0 + n*(-3/5.0 + n*(557/1440.0 + n*(281/630.0 +
+ n*(-1983433/1935360.0)))));
+ np *= n;
+ Q->utg[2] = np*(-17/480.0 + n*( 37/840.0 + n*( 209/4480.0 +
+ n*( -5569/90720.0 ))));
+ Q->gtu[2] = np*( 61/240.0 + n*(-103/140.0 + n*(15061/26880.0 +
+ n*(167603/181440.0))));
+ np *= n;
+ Q->utg[3] = np*(-4397/161280.0 + n*( 11/504.0 + n*( 830251/7257600.0)));
+ Q->gtu[3] = np*(49561/161280.0 + n*(-179/168.0 + n*(6601661/7257600.0)));
+ np *= n;
+ Q->utg[4] = np*(-4583/161280.0 + n*( 108847/3991680.0));
+ Q->gtu[4] = np*(34729/80640.0 + n*(-3418889/1995840.0));
+ np *= n;
+ Q->utg[5] = np*(-20648693/638668800.0);
+ Q->gtu[5] = np*(212378941/319334400.0);
+
+ /* Gaussian latitude value of the origin latitude */
+ Z = gatg (Q->cbg, PROJ_ETMERC_ORDER, P->phi0);
+
+ /* Origin northing minus true northing at the origin latitude */
+ /* i.e. true northing = N - P->Zb */
+ Q->Zb = - Q->Qn*(Z + clens(Q->gtu, PROJ_ETMERC_ORDER, 2*Z));
+ P->inv = exact_e_inv;
+ P->fwd = exact_e_fwd;
+ return P;
+}
+
+
+
+
+/*****************************************************************************/
+//
+// Operation Setups
+//
+/*****************************************************************************/
+
PJ *PROJECTION(tmerc) {
- struct pj_opaque *Q = static_cast<struct pj_opaque*>(pj_calloc (1, sizeof (struct pj_opaque)));
+ /* exact transverse mercator only exists in ellipsoidal form, */
+ /* use approximate version if +a sphere is requested */
+ if (pj_param (P->ctx, P->params, "bapprox").i || P->es <= 0) {
+ struct pj_opaque_approx *Q = static_cast<struct pj_opaque_approx*>(pj_calloc (1, sizeof (struct pj_opaque_approx)));
+ if (nullptr==Q)
+ return pj_default_destructor (P, ENOMEM);
+
+ P->opaque = Q;
+
+ return setup_approx(P);
+ } else {
+ struct pj_opaque_exact *Q = static_cast<struct pj_opaque_exact*>(pj_calloc (1, sizeof (struct pj_opaque_exact)));
+ if (nullptr==Q)
+ return pj_default_destructor (P, ENOMEM);
+ P->opaque = Q;
+ return setup_exact (P);
+ }
+}
+
+
+PJ *PROJECTION(etmerc) {
+ struct pj_opaque_exact *Q = static_cast<struct pj_opaque_exact*>(pj_calloc (1, sizeof (struct pj_opaque_exact)));
if (nullptr==Q)
return pj_default_destructor (P, ENOMEM);
-
P->opaque = Q;
- P->destructor = destructor;
+ return setup_exact (P);
+}
+
- return setup(P);
+/* UTM uses the Poder/Engsager implementation for the underlying projection */
+/* UNLESS +approx is set in which case the Evenden/Snyder implemenation is used. */
+PJ *PROJECTION(utm) {
+ long zone;
+ if (P->es == 0.0) {
+ proj_errno_set(P, PJD_ERR_ELLIPSOID_USE_REQUIRED);
+ return pj_default_destructor(P, ENOMEM);
+ }
+ if (P->lam0 < -1000.0 || P->lam0 > 1000.0) {
+ return pj_default_destructor(P, PJD_ERR_INVALID_UTM_ZONE);
+ }
+
+ P->y0 = pj_param (P->ctx, P->params, "bsouth").i ? 10000000. : 0.;
+ P->x0 = 500000.;
+ if (pj_param (P->ctx, P->params, "tzone").i) /* zone input ? */
+ {
+ zone = pj_param(P->ctx, P->params, "izone").i;
+ if (zone > 0 && zone <= 60)
+ --zone;
+ else {
+ return pj_default_destructor(P, PJD_ERR_INVALID_UTM_ZONE);
+ }
+ }
+ else /* nearest central meridian input */
+ {
+ zone = lround((floor ((adjlon (P->lam0) + M_PI) * 30. / M_PI)));
+ if (zone < 0)
+ zone = 0;
+ else if (zone >= 60)
+ zone = 59;
+ }
+ P->lam0 = (zone + .5) * M_PI / 30. - M_PI;
+ P->k0 = 0.9996;
+ P->phi0 = 0.;
+
+ if (pj_param(P->ctx, P->params, "bapprox").i) {
+ struct pj_opaque_approx *Q = static_cast<struct pj_opaque_approx*>(pj_calloc (1, sizeof (struct pj_opaque_approx)));
+ if (nullptr==Q)
+ return pj_default_destructor (P, ENOMEM);
+ P->opaque = Q;
+
+ return setup_approx(P);
+ } else {
+ struct pj_opaque_exact *Q = static_cast<struct pj_opaque_exact*>(pj_calloc (1, sizeof (struct pj_opaque_exact)));
+ if (nullptr==Q)
+ return pj_default_destructor (P, ENOMEM);
+ P->opaque = Q;
+
+ return setup_exact(P);
+ }
}