diff options
Diffstat (limited to 'src/ell_set.cpp')
| -rw-r--r-- | src/ell_set.cpp | 727 |
1 files changed, 727 insertions, 0 deletions
diff --git a/src/ell_set.cpp b/src/ell_set.cpp new file mode 100644 index 00000000..486230a5 --- /dev/null +++ b/src/ell_set.cpp @@ -0,0 +1,727 @@ +/* set ellipsoid parameters a and es */ + +#include <math.h> +#include <stddef.h> +#include <string.h> + +#include "proj.h" +#include "proj_internal.h" +#include "projects.h" + + +/* Prototypes of the pj_ellipsoid helper functions */ +static int ellps_ellps (PJ *P); +static int ellps_size (PJ *P); +static int ellps_shape (PJ *P); +static int ellps_spherification (PJ *P); + +static paralist *pj_get_param (paralist *list, const char *key); +static char *pj_param_value (paralist *list); +static const PJ_ELLPS *pj_find_ellps (const char *name); + + +/***************************************************************************************/ +int pj_ellipsoid (PJ *P) { +/**************************************************************************************** + This is a replacement for the classic PROJ pj_ell_set function. The main difference + is that pj_ellipsoid augments the PJ object with a copy of the exact tags used to + define its related ellipsoid. + + This makes it possible to let a new PJ object inherit the geometrical properties + of an existing one. + + A complete ellipsoid definition comprises a size (primary) and a shape (secondary) + parameter. + + Size parameters supported are: + R, defining the radius of a spherical planet + a, defining the semimajor axis of an ellipsoidal planet + + Shape parameters supported are: + rf, the reverse flattening of the ellipsoid + f, the flattening of the ellipsoid + es, the eccentricity squared + e, the eccentricity + b, the semiminor axis + + The ellps=xxx parameter provides both size and shape for a number of built in + ellipsoid definitions. + + The ellipsoid definition may be augmented with a spherification flag, turning + the ellipsoid into a sphere with features defined by the ellipsoid. + + Spherification parameters supported are: + R_A, which gives a sphere with the same surface area as the ellipsoid + R_A, which gives a sphere with the same volume as the ellipsoid + + R_a, which gives a sphere with R = (a + b)/2 (arithmetic mean) + R_g, which gives a sphere with R = sqrt(a*b) (geometric mean) + R_h, which gives a sphere with R = 2*a*b/(a+b) (harmonic mean) + + R_lat_a=phi, which gives a sphere with R being the arithmetic mean of + of the corresponding ellipsoid at latitude phi. + R_lat_g=phi, which gives a sphere with R being the geometric mean of + of the corresponding ellipsoid at latitude phi. + + If R is given as size parameter, any shape and spherification parameters + given are ignored. + + If size and shape are given as ellps=xxx, later shape and size parameters + are are taken into account as modifiers for the built in ellipsoid definition. + + While this may seem strange, it is in accordance with historical PROJ + behaviour. It can e.g. be used to define coordinates on the ellipsoid + scaled to unit semimajor axis by specifying "+ellps=xxx +a=1" + +****************************************************************************************/ + int err = proj_errno_reset (P); + const char *empty = {""}; + + P->def_size = P->def_shape = P->def_spherification = P->def_ellps = nullptr; + + /* Specifying R overrules everything */ + if (pj_get_param (P->params, "R")) { + ellps_size (P); + pj_calc_ellipsoid_params (P, P->a, 0); + if (proj_errno (P)) + return 1; + return proj_errno_restore (P, err); + } + + + /* If an ellps argument is specified, start by using that */ + if (0 != ellps_ellps (P)) + return 1; + + /* We may overwrite the size */ + if (0 != ellps_size (P)) + return 2; + + /* We may also overwrite the shape */ + if (0 != ellps_shape (P)) + return 3; + + /* When we're done with it, we compute all related ellipsoid parameters */ + pj_calc_ellipsoid_params (P, P->a, P->es); + + /* And finally, we may turn it into a sphere */ + if (0 != ellps_spherification (P)) + return 4; + + proj_log_debug (P, "pj_ellipsoid - final: a=%.3f f=1/%7.3f, errno=%d", + P->a, P->f!=0? 1/P->f: 0, proj_errno (P)); + proj_log_debug (P, "pj_ellipsoid - final: %s %s %s %s", + P->def_size? P->def_size: empty, + P->def_shape? P->def_shape: empty, + P->def_spherification? P->def_spherification: empty, + P->def_ellps? P->def_ellps: empty ); + + if (proj_errno (P)) + return 5; + + /* success */ + return proj_errno_restore (P, err); +} + + +/***************************************************************************************/ +static int ellps_ellps (PJ *P) { +/***************************************************************************************/ + PJ B; + const PJ_ELLPS *ellps; + paralist *par = nullptr; + char *name; + int err; + + /* Sail home if ellps=xxx is not specified */ + par = pj_get_param (P->params, "ellps"); + if (nullptr==par) + return 0; + + /* Otherwise produce a fake PJ to make ellps_size/ellps_shape do the hard work for us */ + + /* First move B into P's context to get error messages onto the right channel */ + B.ctx = P->ctx; + + /* Then look up the right size and shape parameters from the builtin list */ + if (strlen (par->param) < 7) + return proj_errno_set (P, PJD_ERR_INVALID_ARG); + name = par->param + 6; + ellps = pj_find_ellps (name); + if (nullptr==ellps) + return proj_errno_set (P, PJD_ERR_UNKNOWN_ELLP_PARAM); + + /* Now, get things ready for ellps_size/ellps_shape, make them do their thing, and clean up */ + err = proj_errno_reset (P); + B = *P; + pj_erase_ellipsoid_def (&B); + B.params = pj_mkparam (ellps->major); + B.params->next = pj_mkparam (ellps->ell); + + ellps_size (&B); + ellps_shape (&B); + + pj_dealloc (B.params->next); + pj_dealloc (B.params); + if (proj_errno (&B)) + return proj_errno (&B); + + /* Finally update P and sail home */ + pj_inherit_ellipsoid_def (&B, P); + P->def_ellps = par->param; + par->used = 1; + + return proj_errno_restore (P, err); +} + + +/***************************************************************************************/ +static int ellps_size (PJ *P) { +/***************************************************************************************/ + paralist *par = nullptr; + int a_was_set = 0; + + /* A size parameter *must* be given, but may have been given as ellps prior */ + if (P->a != 0) + a_was_set = 1; + + /* Check which size key is specified */ + par = pj_get_param (P->params, "R"); + if (nullptr==par) + par = pj_get_param (P->params, "a"); + if (nullptr==par) + return a_was_set? 0: proj_errno_set (P, PJD_ERR_MAJOR_AXIS_NOT_GIVEN); + + P->def_size = par->param; + par->used = 1; + P->a = pj_atof (pj_param_value (par)); + if (P->a <= 0) + return proj_errno_set (P, PJD_ERR_MAJOR_AXIS_NOT_GIVEN); + if (HUGE_VAL==P->a) + return proj_errno_set (P, PJD_ERR_MAJOR_AXIS_NOT_GIVEN); + + if ('R'==par->param[0]) { + P->es = P->f = P->e = P->rf = 0; + P->b = P->a; + } + return 0; +} + + +/***************************************************************************************/ +static int ellps_shape (PJ *P) { +/***************************************************************************************/ + const char *keys[] = {"rf", "f", "es", "e", "b"}; + paralist *par = nullptr; + char *def = nullptr; + size_t i, len; + + par = nullptr; + len = sizeof (keys) / sizeof (char *); + + /* Check which shape key is specified */ + for (i = 0; i < len; i++) { + par = pj_get_param (P->params, keys[i]); + if (par) + break; + } + + /* Not giving a shape parameter means selecting a sphere, unless shape */ + /* has been selected previously via ellps=xxx */ + if (nullptr==par && P->es != 0) + return 0; + if (nullptr==par && P->es==0) { + P->es = P->f = 0; + P->b = P->a; + return 0; + } + + P->def_shape = def = par->param; + par->used = 1; + P->es = P->f = P->b = P->e = P->rf = 0; + + switch (i) { + + /* reverse flattening, rf */ + case 0: + P->rf = pj_atof (pj_param_value (par)); + if (HUGE_VAL==P->rf) + return proj_errno_set (P, PJD_ERR_INVALID_ARG); + if (0==P->rf) + return proj_errno_set (P, PJD_ERR_REV_FLATTENING_IS_ZERO); + P->f = 1 / P->rf; + P->es = 2*P->f - P->f*P->f; + break; + + /* flattening, f */ + case 1: + P->f = pj_atof (pj_param_value (par)); + if (HUGE_VAL==P->f) + return proj_errno_set (P, PJD_ERR_INVALID_ARG); + + P->rf = P->f != 0.0 ? 1.0/P->f: HUGE_VAL; + P->es = 2*P->f - P->f*P->f; + break; + + /* eccentricity squared, es */ + case 2: + P->es = pj_atof (pj_param_value (par)); + if (HUGE_VAL==P->es) + return proj_errno_set (P, PJD_ERR_INVALID_ARG); + if (1==P->es) + return proj_errno_set (P, PJD_ERR_ECCENTRICITY_IS_ONE); + break; + + /* eccentricity, e */ + case 3: + P->e = pj_atof (pj_param_value (par)); + if (HUGE_VAL==P->e) + return proj_errno_set (P, PJD_ERR_INVALID_ARG); + if (0==P->e) + return proj_errno_set (P, PJD_ERR_INVALID_ARG); + if (1==P->e) + return proj_errno_set (P, PJD_ERR_ECCENTRICITY_IS_ONE); + P->es = P->e * P->e; + break; + + /* semiminor axis, b */ + case 4: + P->b = pj_atof (pj_param_value (par)); + if (HUGE_VAL==P->b) + return proj_errno_set (P, PJD_ERR_INVALID_ARG); + if (0==P->b) + return proj_errno_set (P, PJD_ERR_ECCENTRICITY_IS_ONE); + if (P->b==P->a) + break; + P->f = (P->a - P->b) / P->a; + P->es = 2*P->f - P->f*P->f; + break; + default: + return PJD_ERR_INVALID_ARG; + + } + + if (P->es < 0) + return proj_errno_set (P, PJD_ERR_ES_LESS_THAN_ZERO); + return 0; +} + + +/* series coefficients for calculating ellipsoid-equivalent spheres */ +static const double SIXTH = 1/6.; +static const double RA4 = 17/360.; +static const double RA6 = 67/3024.; +static const double RV4 = 5/72.; +static const double RV6 = 55/1296.; + +/***************************************************************************************/ +static int ellps_spherification (PJ *P) { +/***************************************************************************************/ + const char *keys[] = {"R_A", "R_V", "R_a", "R_g", "R_h", "R_lat_a", "R_lat_g"}; + size_t len, i; + paralist *par = nullptr; + char *def = nullptr; + + double t; + char *v, *endp; + + len = sizeof (keys) / sizeof (char *); + P->def_spherification = nullptr; + + /* Check which spherification key is specified */ + for (i = 0; i < len; i++) { + par = pj_get_param (P->params, keys[i]); + if (par) + break; + } + + /* No spherification specified? Then we're done */ + if (i==len) + return 0; + + /* Store definition */ + P->def_spherification = def = par->param; + par->used = 1; + + switch (i) { + + /* R_A - a sphere with same area as ellipsoid */ + case 0: + P->a *= 1. - P->es * (SIXTH + P->es * (RA4 + P->es * RA6)); + break; + + /* R_V - a sphere with same volume as ellipsoid */ + case 1: + P->a *= 1. - P->es * (SIXTH + P->es * (RV4 + P->es * RV6)); + break; + + /* R_a - a sphere with R = the arithmetic mean of the ellipsoid */ + case 2: + P->a = (P->a + P->b) / 2; + break; + + /* R_g - a sphere with R = the geometric mean of the ellipsoid */ + case 3: + P->a = sqrt (P->a * P->b); + break; + + /* R_h - a sphere with R = the harmonic mean of the ellipsoid */ + case 4: + if (P->a + P->b == 0) + return proj_errno_set (P, PJD_ERR_TOLERANCE_CONDITION); + P->a = (2*P->a * P->b) / (P->a + P->b); + break; + + /* R_lat_a - a sphere with R = the arithmetic mean of the ellipsoid at given latitude */ + case 5: + /* R_lat_g - a sphere with R = the geometric mean of the ellipsoid at given latitude */ + case 6: + v = pj_param_value (par); + t = proj_dmstor (v, &endp); + if (fabs (t) > M_HALFPI) + return proj_errno_set (P, PJD_ERR_REF_RAD_LARGER_THAN_90); + t = sin (t); + t = 1 - P->es * t * t; + if (i==5) /* arithmetic */ + P->a *= (1. - P->es + t) / (2 * t * sqrt(t)); + else /* geometric */ + P->a *= sqrt (1 - P->es) / t; + break; + } + + /* Clean up the ellipsoidal parameters to reflect the sphere */ + P->es = P->e = P->f = 0; + P->rf = HUGE_VAL; + P->b = P->a; + pj_calc_ellipsoid_params (P, P->a, 0); + + return 0; +} + + +/* locate parameter in list */ +static paralist *pj_get_param (paralist *list, const char *key) { + size_t l = strlen(key); + while (list && !(0==strncmp(list->param, key, l) && (0==list->param[l] || list->param[l] == '=') ) ) + list = list->next; + return list; +} + + +static char *pj_param_value (paralist *list) { + char *key, *value; + if (nullptr==list) + return nullptr; + + key = list->param; + value = strchr (key, '='); + + /* a flag (i.e. a key without value) has its own name (key) as value */ + return value? value + 1: key; +} + + +static const PJ_ELLPS *pj_find_ellps (const char *name) { + int i; + const char *s; + const PJ_ELLPS *ellps; + + if (nullptr==name) + return nullptr; + + ellps = proj_list_ellps(); + + /* Search through internal ellipsoid list for name */ + for (i = 0; (s = ellps[i].id) && strcmp(name, s) ; ++i); + if (nullptr==s) + return nullptr; + return ellps + i; +} + + +/**************************************************************************************/ +void pj_erase_ellipsoid_def (PJ *P) { +/*************************************************************************************** + Erase all ellipsoidal parameters in P +***************************************************************************************/ + PJ B; + + /* Make a blank PJ to copy from */ + memset (&B, 0, sizeof (B)); + + /* And use it to overwrite all existing ellipsoid defs */ + pj_inherit_ellipsoid_def (&B, P); +} + + +/**************************************************************************************/ +void pj_inherit_ellipsoid_def (const PJ *src, PJ *dst) { +/*************************************************************************************** + Brute force copy the ellipsoidal parameters from src to dst. This code was + written before the actual ellipsoid setup parameters were kept available in + the PJ->def_xxx elements. +***************************************************************************************/ + + /* The linear parameters */ + dst->a = src->a; + dst->b = src->b; + dst->ra = src->ra; + dst->rb = src->rb; + + /* The eccentricities */ + dst->alpha = src->alpha; + dst->e = src->e; + dst->es = src->es; + dst->e2 = src->e2; + dst->e2s = src->e2s; + dst->e3 = src->e3; + dst->e3s = src->e3s; + dst->one_es = src->one_es; + dst->rone_es = src->rone_es; + + /* The flattenings */ + dst->f = src->f; + dst->f2 = src->f2; + dst->n = src->n; + dst->rf = src->rf; + dst->rf2 = src->rf2; + dst->rn = src->rn; + + /* This one's for GRS80 */ + dst->J = src->J; + + /* es and a before any +proj related adjustment */ + dst->es_orig = src->es_orig; + dst->a_orig = src->a_orig; +} + + +/***************************************************************************************/ +int pj_calc_ellipsoid_params (PJ *P, double a, double es) { +/**************************************************************************************** + Calculate a large number of ancillary ellipsoidal parameters, in addition to + the two traditional PROJ defining parameters: Semimajor axis, a, and the + eccentricity squared, es. + + Most of these parameters are fairly cheap to compute in comparison to the overall + effort involved in initializing a PJ object. They may, however, take a substantial + part of the time taken in computing an individual point transformation. + + So by providing them up front, we can amortize the (already modest) cost over all + transformations carried out over the entire lifetime of a PJ object, rather than + incur that cost for every single transformation. + + Most of the parameter calculations here are based on the "angular eccentricity", + i.e. the angle, measured from the semiminor axis, of a line going from the north + pole to one of the foci of the ellipsoid - or in other words: The arc sine of the + eccentricity. + + The formulae used are mostly taken from: + + Richard H. Rapp: Geometric Geodesy, Part I, (178 pp, 1991). + Columbus, Ohio: Dept. of Geodetic Science + and Surveying, Ohio State University. + +****************************************************************************************/ + + P->a = a; + P->es = es; + + /* Compute some ancillary ellipsoidal parameters */ + if (P->e==0) + P->e = sqrt(P->es); /* eccentricity */ + P->alpha = asin (P->e); /* angular eccentricity */ + + /* second eccentricity */ + P->e2 = tan (P->alpha); + P->e2s = P->e2 * P->e2; + + /* third eccentricity */ + P->e3 = (0!=P->alpha)? sin (P->alpha) / sqrt(2 - sin (P->alpha)*sin (P->alpha)): 0; + P->e3s = P->e3 * P->e3; + + /* flattening */ + if (0==P->f) + P->f = 1 - cos (P->alpha); /* = 1 - sqrt (1 - PIN->es); */ + P->rf = P->f != 0.0 ? 1.0/P->f: HUGE_VAL; + + /* second flattening */ + P->f2 = (cos(P->alpha)!=0)? 1/cos (P->alpha) - 1: 0; + P->rf2 = P->f2 != 0.0 ? 1/P->f2: HUGE_VAL; + + /* third flattening */ + P->n = pow (tan (P->alpha/2), 2); + P->rn = P->n != 0.0 ? 1/P->n: HUGE_VAL; + + /* ...and a few more */ + if (0==P->b) + P->b = (1 - P->f)*P->a; + P->rb = 1. / P->b; + P->ra = 1. / P->a; + + P->one_es = 1. - P->es; + if (P->one_es == 0.) { + pj_ctx_set_errno( P->ctx, PJD_ERR_ECCENTRICITY_IS_ONE); + return PJD_ERR_ECCENTRICITY_IS_ONE; + } + + P->rone_es = 1./P->one_es; + + return 0; +} + + + +#ifndef KEEP_ORIGINAL_PJ_ELL_SET +/**************************************************************************************/ +int pj_ell_set (PJ_CONTEXT *ctx, paralist *pl, double *a, double *es) { +/*************************************************************************************** + Initialize ellipsoidal parameters by emulating the original ellipsoid setup + function by Gerald Evenden, through a call to pj_ellipsoid +***************************************************************************************/ + PJ B; + int ret; + + memset (&B, 0, sizeof (B)); + B.ctx = ctx; + B.params = pl; + + ret = pj_ellipsoid (&B); + if (ret) + return ret; + + *a = B.a; + *es = B.es; + return 0; +} +#else + + +/**************************************************************************************/ +int pj_ell_set (projCtx ctx, paralist *pl, double *a, double *es) { +/*************************************************************************************** + Initialize ellipsoidal parameters: This is the original ellipsoid setup + function by Gerald Evenden - significantly more compact than pj_ellipsoid and + its many helper functions, and still quite readable. + + It is, however, also so tight that it is hard to modify and add functionality, + and equally hard to find the right place to add further commentary for improved + future maintainability. + + Hence, when the need to store in the PJ object, the parameters actually used to + define the ellipsoid came up, rather than modifying this little gem of + "economy of expression", a much more verbose reimplementation, pj_ellipsoid, + was written. +***************************************************************************************/ + int i; + double b=0.0, e; + char *name; + paralist *start = 0; + + /* clear any previous error */ + pj_ctx_set_errno(ctx,0); + + /* check for varying forms of ellipsoid input */ + *a = *es = 0.; + + /* R takes precedence */ + if (pj_param(ctx, pl, "tR").i) + *a = pj_param(ctx,pl, "dR").f; + + /* probable elliptical figure */ + else { + /* check if ellps present and temporarily append its values to pl */ + if ((name = pj_param(ctx,pl, "sellps").s) != NULL) { + char *s; + + for (start = pl; start && start->next ; start = start->next) ; + for (i = 0; (s = pj_ellps[i].id) && strcmp(name, s) ; ++i) ; + if (!s) { + pj_ctx_set_errno( ctx, PJD_ERR_UNKNOWN_ELLP_PARAM); + return 1; + } + start->next = pj_mkparam(pj_ellps[i].major); + start->next->next = pj_mkparam(pj_ellps[i].ell); + } + + *a = pj_param(ctx,pl, "da").f; + + if (pj_param(ctx,pl, "tes").i) /* eccentricity squared */ + *es = pj_param(ctx,pl, "des").f; + else if (pj_param(ctx,pl, "te").i) { /* eccentricity */ + e = pj_param(ctx,pl, "de").f; + *es = e * e; + } else if (pj_param(ctx,pl, "trf").i) { /* recip flattening */ + *es = pj_param(ctx,pl, "drf").f; + if (*es == 0.0) { + pj_ctx_set_errno(ctx, PJD_ERR_REV_FLATTENING_IS_ZERO); + goto bomb; + } + *es = 1./ *es; + *es = *es * (2. - *es); + } else if (pj_param(ctx,pl, "tf").i) { /* flattening */ + *es = pj_param(ctx,pl, "df").f; + *es = *es * (2. - *es); + } else if (pj_param(ctx,pl, "tb").i) { /* minor axis */ + b = pj_param(ctx,pl, "db").f; + *es = 1. - (b * b) / (*a * *a); + } /* else *es == 0. and sphere of radius *a */ + if (b == 0.0) + b = *a * sqrt(1. - *es); + + + /* following options turn ellipsoid into equivalent sphere */ + if (pj_param(ctx,pl, "bR_A").i) { /* sphere--area of ellipsoid */ + *a *= 1. - *es * (SIXTH + *es * (RA4 + *es * RA6)); + *es = 0.; + } else if (pj_param(ctx,pl, "bR_V").i) { /* sphere--vol. of ellipsoid */ + *a *= 1. - *es * (SIXTH + *es * (RV4 + *es * RV6)); + *es = 0.; + } else if (pj_param(ctx,pl, "bR_a").i) { /* sphere--arithmetic mean */ + *a = .5 * (*a + b); + *es = 0.; + } else if (pj_param(ctx,pl, "bR_g").i) { /* sphere--geometric mean */ + *a = sqrt(*a * b); + *es = 0.; + } else if (pj_param(ctx,pl, "bR_h").i) { /* sphere--harmonic mean */ + if ( (*a + b) == 0.0) { + pj_ctx_set_errno(ctx, PJD_ERR_TOLERANCE_CONDITION); + goto bomb; + } + *a = 2. * *a * b / (*a + b); + *es = 0.; + } else if ((i = pj_param(ctx,pl, "tR_lat_a").i) || /* sphere--arith. */ + pj_param(ctx,pl, "tR_lat_g").i) { /* or geom. mean at latitude */ + double tmp; + + tmp = sin(pj_param(ctx,pl, i ? "rR_lat_a" : "rR_lat_g").f); + if (fabs(tmp) > M_HALFPI) { + pj_ctx_set_errno(ctx, PJD_ERR_REF_RAD_LARGER_THAN_90); + goto bomb; + } + tmp = 1. - *es * tmp * tmp; + *a *= i ? .5 * (1. - *es + tmp) / ( tmp * sqrt(tmp)) : + sqrt(1. - *es) / tmp; + *es = 0.; + } +bomb: + if (start) { /* clean up temporary extension of list */ + pj_dalloc(start->next->next); + pj_dalloc(start->next); + start->next = 0; + } + if (ctx->last_errno) + return 1; + } + /* some remaining checks */ + if (*es < 0.) { + pj_ctx_set_errno(ctx, PJD_ERR_ES_LESS_THAN_ZERO); + return 1; + } + if (*a <= 0.) { + pj_ctx_set_errno(ctx, PJD_ERR_MAJOR_AXIS_NOT_GIVEN); + return 1; + } + return 0; +} +#endif |
