diff options
Diffstat (limited to 'src/geodesic.c')
| -rw-r--r-- | src/geodesic.c | 380 |
1 files changed, 239 insertions, 141 deletions
diff --git a/src/geodesic.c b/src/geodesic.c index fd0214c7..9a8f043c 100644 --- a/src/geodesic.c +++ b/src/geodesic.c @@ -18,7 +18,7 @@ * * See the comments in geodesic.h for documentation. * - * Copyright (c) Charles Karney (2012-2014) <charles@karney.com> and licensed + * Copyright (c) Charles Karney (2012-2015) <charles@karney.com> and licensed * under the MIT/X11 License. For more information, see * http://geographiclib.sourceforge.net/ */ @@ -27,8 +27,10 @@ #include <math.h> #define GEOGRAPHICLIB_GEODESIC_ORDER 6 +#define nA1 GEOGRAPHICLIB_GEODESIC_ORDER #define nC1 GEOGRAPHICLIB_GEODESIC_ORDER #define nC1p GEOGRAPHICLIB_GEODESIC_ORDER +#define nA2 GEOGRAPHICLIB_GEODESIC_ORDER #define nC2 GEOGRAPHICLIB_GEODESIC_ORDER #define nA3 GEOGRAPHICLIB_GEODESIC_ORDER #define nA3x nA3 @@ -137,6 +139,12 @@ static real sumx(real u, real v, real* t) { return s; } +static real polyval(int N, const real p[], real x) { + real y = N < 0 ? 0 : *p++; + while (--N >= 0) y = y * x + *p++; + return y; +} + static real minx(real x, real y) { return x < y ? x : y; } @@ -146,7 +154,7 @@ static real maxx(real x, real y) static void swapx(real* x, real* y) { real t = *x; *x = *y; *y = t; } -static void SinCosNorm(real* sinx, real* cosx) { +static void norm2(real* sinx, real* cosx) { real r = hypotx(*sinx, *cosx); *sinx /= r; *cosx /= r; @@ -171,7 +179,7 @@ static real AngRound(real x) { volatile real y = fabs(x); /* The compiler mustn't "simplify" z - (z - y) to y */ y = y < z ? z - (z - y) : y; - return x < 0 ? -y : y; + return x < 0 ? 0 - y : y; } static void A3coeff(struct geod_geodesic* g); @@ -270,7 +278,8 @@ void geod_lineinit(struct geod_geodesicline* l, l->f1 = g->f1; /* If caps is 0 assume the standard direct calculation */ l->caps = (caps ? caps : GEOD_DISTANCE_IN | GEOD_LONGITUDE) | - GEOD_LATITUDE | GEOD_AZIMUTH; /* Always allow latitude and azimuth */ + /* always allow latitude and azimuth and unrolling of longitude */ + GEOD_LATITUDE | GEOD_AZIMUTH | GEOD_LONG_UNROLL; l->lat1 = lat1; l->lon1 = lon1; @@ -286,7 +295,7 @@ void geod_lineinit(struct geod_geodesicline* l, /* Ensure cbet1 = +epsilon at poles */ sbet1 = l->f1 * sin(phi); cbet1 = fabs(lat1) == 90 ? tiny : cos(phi); - SinCosNorm(&sbet1, &cbet1); + norm2(&sbet1, &cbet1); l->dn1 = sqrt(1 + g->ep2 * sq(sbet1)); /* Evaluate alp0 from sin(alp1) * cos(bet1) = sin(alp0), */ @@ -305,8 +314,8 @@ void geod_lineinit(struct geod_geodesicline* l, * With alp0 = 0, omg1 = 0 for alp1 = 0, omg1 = pi for alp1 = pi. */ l->ssig1 = sbet1; l->somg1 = l->salp0 * sbet1; l->csig1 = l->comg1 = sbet1 != 0 || l->calp1 != 0 ? cbet1 * l->calp1 : 1; - SinCosNorm(&l->ssig1, &l->csig1); /* sig1 in (-pi, pi] */ - /* SinCosNorm(somg1, comg1); -- don't need to normalize! */ + norm2(&l->ssig1, &l->csig1); /* sig1 in (-pi, pi] */ + /* norm2(somg1, comg1); -- don't need to normalize! */ l->k2 = sq(l->calp0) * g->ep2; eps = l->k2 / (2 * (1 + sqrt(1 + l->k2)) + l->k2); @@ -452,12 +461,14 @@ real geod_genposition(const struct geod_geodesicline* l, s12 = flags & GEOD_ARCMODE ? l->b * ((1 + l->A1m1) * sig12 + AB1) : s12_a12; if (outmask & GEOD_LONGITUDE) { + int E = l->salp0 < 0 ? -1 : 1; /* east or west going? */ /* tan(omg2) = sin(alp0) * tan(sig2) */ somg2 = l->salp0 * ssig2; comg2 = csig2; /* No need to normalize */ /* omg12 = omg2 - omg1 */ - omg12 = flags & GEOD_LONG_NOWRAP ? sig12 - - (atan2(ssig2, csig2) - atan2(l->ssig1, l->csig1)) - + (atan2(somg2, comg2) - atan2(l->somg1, l->comg1)) + omg12 = flags & GEOD_LONG_UNROLL + ? E * (sig12 + - (atan2( ssig2, csig2) - atan2( l->ssig1, l->csig1)) + + (atan2(E * somg2, comg2) - atan2(E * l->somg1, l->comg1))) : atan2(somg2 * l->comg1 - comg2 * l->somg1, comg2 * l->comg1 + somg2 * l->somg1); lam12 = omg12 + l->A3c * @@ -466,7 +477,7 @@ real geod_genposition(const struct geod_geodesicline* l, lon12 = lam12 / degree; /* Use AngNormalize2 because longitude might have wrapped multiple * times. */ - lon2 = flags & GEOD_LONG_NOWRAP ? l->lon1 + lon12 : + lon2 = flags & GEOD_LONG_UNROLL ? l->lon1 + lon12 : AngNormalize(AngNormalize(l->lon1) + AngNormalize2(lon12)); } @@ -499,7 +510,7 @@ real geod_genposition(const struct geod_geodesicline* l, B42 = SinCosSeries(FALSE, ssig2, csig2, l->C4a, nC4); real salp12, calp12; if (l->calp0 == 0 || l->salp0 == 0) { - /* alp12 = alp2 - alp1, used in atan2 so no need to normalized */ + /* alp12 = alp2 - alp1, used in atan2 so no need to normalize */ salp12 = salp2 * l->calp1 - calp2 * l->salp1; calp12 = calp2 * l->calp1 + salp2 * l->salp1; /* The right thing appears to happen if alp1 = +/-180 and alp2 = 0, viz @@ -645,13 +656,13 @@ real geod_geninverse(const struct geod_geodesic* g, /* Ensure cbet1 = +epsilon at poles */ sbet1 = g->f1 * sin(phi); cbet1 = lat1 == -90 ? tiny : cos(phi); - SinCosNorm(&sbet1, &cbet1); + norm2(&sbet1, &cbet1); phi = lat2 * degree; /* Ensure cbet2 = +epsilon at poles */ sbet2 = g->f1 * sin(phi); cbet2 = fabs(lat2) == 90 ? tiny : cos(phi); - SinCosNorm(&sbet2, &cbet2); + norm2(&sbet2, &cbet2); /* If cbet1 < -sbet1, then cbet2 - cbet1 is a sensitive measure of the * |bet1| - |bet2|. Alternatively (cbet1 >= -sbet1), abs(sbet2) + sbet1 is @@ -771,7 +782,7 @@ real geod_geninverse(const struct geod_geodesic* g, for (tripn = FALSE, tripb = FALSE; numit < maxit2; ++numit) { /* the WGS84 test set: mean = 1.47, sd = 1.25, max = 16 * WGS84 and random input: mean = 2.85, sd = 0.60 */ - real dv, + real dv = 0, v = (Lambda12(g, sbet1, cbet1, dn1, sbet2, cbet2, dn2, salp1, calp1, &salp2, &calp2, &sig12, &ssig1, &csig1, &ssig2, &csig2, &eps, &omg12, numit < maxit1, &dv, C1a, C2a, C3a) @@ -793,7 +804,7 @@ real geod_geninverse(const struct geod_geodesic* g, if (nsalp1 > 0 && fabs(dalp1) < pi) { calp1 = calp1 * cdalp1 - salp1 * sdalp1; salp1 = nsalp1; - SinCosNorm(&salp1, &calp1); + norm2(&salp1, &calp1); /* In some regimes we don't get quadratic convergence because * slope -> 0. So use convergence conditions based on epsilon * instead of sqrt(epsilon). */ @@ -811,7 +822,7 @@ real geod_geninverse(const struct geod_geodesic* g, * WGS84 and random input: mean = 4.74, sd = 0.99 */ salp1 = (salp1a + salp1b)/2; calp1 = (calp1a + calp1b)/2; - SinCosNorm(&salp1, &calp1); + norm2(&salp1, &calp1); tripn = FALSE; tripb = (fabs(salp1a - salp1) + (calp1a - calp1) < tolb || fabs(salp1 - salp1b) + (calp1 - calp1b) < tolb); @@ -852,8 +863,8 @@ real geod_geninverse(const struct geod_geodesic* g, A4 = sq(g->a) * calp0 * salp0 * g->e2; real C4a[nC4]; real B41, B42; - SinCosNorm(&ssig1, &csig1); - SinCosNorm(&ssig2, &csig2); + norm2(&ssig1, &csig1); + norm2(&ssig2, &csig2); C4f(g, eps, C4a); B41 = SinCosSeries(FALSE, ssig1, csig1, C4a, nC4); B42 = SinCosSeries(FALSE, ssig2, csig2, C4a, nC4); @@ -1119,7 +1130,7 @@ real InverseStart(const struct geod_geodesic* g, salp2 = cbet1 * somg12; calp2 = sbet12 - cbet1 * sbet2 * (comg12 >= 0 ? sq(somg12) / (1 + comg12) : 1 - comg12); - SinCosNorm(&salp2, &calp2); + norm2(&salp2, &calp2); /* Set return value */ sig12 = atan2(ssig12, csig12); } else if (fabs(g->n) > (real)(0.1) || /* No astroid calc if too eccentric */ @@ -1219,7 +1230,7 @@ real InverseStart(const struct geod_geodesic* g, } /* Sanity check on starting guess. Backwards check allows NaN through. */ if (!(salp1 <= 0)) - SinCosNorm(&salp1, &calp1); + norm2(&salp1, &calp1); else { salp1 = 1; calp1 = 0; } @@ -1266,8 +1277,8 @@ real Lambda12(const struct geod_geodesic* g, * tan(omg1) = sin(alp0) * tan(sig1) = tan(omg1)=tan(alp1)*sin(bet1) */ ssig1 = sbet1; somg1 = salp0 * sbet1; csig1 = comg1 = calp1 * cbet1; - SinCosNorm(&ssig1, &csig1); - /* SinCosNorm(&somg1, &comg1); -- don't need to normalize! */ + norm2(&ssig1, &csig1); + /* norm2(&somg1, &comg1); -- don't need to normalize! */ /* Enforce symmetries in the case abs(bet2) = -bet1. Need to be careful * about this case, since this can yield singularities in the Newton @@ -1288,8 +1299,8 @@ real Lambda12(const struct geod_geodesic* g, * tan(omg2) = sin(alp0) * tan(sig2). */ ssig2 = sbet2; somg2 = salp0 * sbet2; csig2 = comg2 = calp2 * cbet2; - SinCosNorm(&ssig2, &csig2); - /* SinCosNorm(&somg2, &comg2); -- don't need to normalize! */ + norm2(&ssig2, &csig2); + /* norm2(&somg2, &comg2); -- don't need to normalize! */ /* sig12 = sig2 - sig1, limit to [0, pi] */ sig12 = atan2(maxx(csig1 * ssig2 - ssig1 * csig2, (real)(0)), @@ -1335,177 +1346,264 @@ real Lambda12(const struct geod_geodesic* g, } real A3f(const struct geod_geodesic* g, real eps) { - /* Evaluate sum(A3x[k] * eps^k, k, 0, nA3x-1) by Horner's method */ - real v = 0; - int i; - for (i = nA3x; i; ) - v = eps * v + g->A3x[--i]; - return v; + /* Evaluate A3 */ + return polyval(nA3 - 1, g->A3x, eps); } void C3f(const struct geod_geodesic* g, real eps, real c[]) { - /* Evaluate C3 coeffs by Horner's method + /* Evaluate C3 coeffs * Elements c[1] thru c[nC3 - 1] are set */ - int i, j, k; real mult = 1; - for (j = nC3x, k = nC3 - 1; k; ) { - real t = 0; - for (i = nC3 - k; i; --i) - t = eps * t + g->C3x[--j]; - c[k--] = t; - } - - for (k = 1; k < nC3; ) { + int o = 0, l; + for (l = 1; l < nC3; ++l) { /* l is index of C3[l] */ + int m = nC3 - l - 1; /* order of polynomial in eps */ mult *= eps; - c[k++] *= mult; + c[l] = mult * polyval(m, g->C3x + o, eps); + o += m + 1; } } void C4f(const struct geod_geodesic* g, real eps, real c[]) { - /* Evaluate C4 coeffs by Horner's method + /* Evaluate C4 coeffs * Elements c[0] thru c[nC4 - 1] are set */ - int i, j, k; real mult = 1; - for (j = nC4x, k = nC4; k; ) { - real t = 0; - for (i = nC4 - k + 1; i; --i) - t = eps * t + g->C4x[--j]; - c[--k] = t; - } - - for (k = 1; k < nC4; ) { + int o = 0, l; + for (l = 0; l < nC4; ++l) { /* l is index of C4[l] */ + int m = nC4 - l - 1; /* order of polynomial in eps */ + c[l] = mult * polyval(m, g->C4x + o, eps); + o += m + 1; mult *= eps; - c[k++] *= mult; } } -/* Generated by Maxima on 2010-09-04 10:26:17-04:00 */ - /* The scale factor A1-1 = mean value of (d/dsigma)I1 - 1 */ real A1m1f(real eps) { - real - eps2 = sq(eps), - t = eps2*(eps2*(eps2+4)+64)/256; + static const real coeff[] = { + /* (1-eps)*A1-1, polynomial in eps2 of order 3 */ + 1, 4, 64, 0, 256, + }; + int m = nA1/2; + real t = polyval(m, coeff, sq(eps)) / coeff[m + 1]; return (t + eps) / (1 - eps); } /* The coefficients C1[l] in the Fourier expansion of B1 */ void C1f(real eps, real c[]) { + static const real coeff[] = { + /* C1[1]/eps^1, polynomial in eps2 of order 2 */ + -1, 6, -16, 32, + /* C1[2]/eps^2, polynomial in eps2 of order 2 */ + -9, 64, -128, 2048, + /* C1[3]/eps^3, polynomial in eps2 of order 1 */ + 9, -16, 768, + /* C1[4]/eps^4, polynomial in eps2 of order 1 */ + 3, -5, 512, + /* C1[5]/eps^5, polynomial in eps2 of order 0 */ + -7, 1280, + /* C1[6]/eps^6, polynomial in eps2 of order 0 */ + -7, 2048, + }; real eps2 = sq(eps), d = eps; - c[1] = d*((6-eps2)*eps2-16)/32; - d *= eps; - c[2] = d*((64-9*eps2)*eps2-128)/2048; - d *= eps; - c[3] = d*(9*eps2-16)/768; - d *= eps; - c[4] = d*(3*eps2-5)/512; - d *= eps; - c[5] = -7*d/1280; - d *= eps; - c[6] = -7*d/2048; + int o = 0, l; + for (l = 1; l <= nC1; ++l) { /* l is index of C1p[l] */ + int m = (nC1 - l) / 2; /* order of polynomial in eps^2 */ + c[l] = d * polyval(m, coeff + o, eps2) / coeff[o + m + 1]; + o += m + 2; + d *= eps; + } } /* The coefficients C1p[l] in the Fourier expansion of B1p */ void C1pf(real eps, real c[]) { + static const real coeff[] = { + /* C1p[1]/eps^1, polynomial in eps2 of order 2 */ + 205, -432, 768, 1536, + /* C1p[2]/eps^2, polynomial in eps2 of order 2 */ + 4005, -4736, 3840, 12288, + /* C1p[3]/eps^3, polynomial in eps2 of order 1 */ + -225, 116, 384, + /* C1p[4]/eps^4, polynomial in eps2 of order 1 */ + -7173, 2695, 7680, + /* C1p[5]/eps^5, polynomial in eps2 of order 0 */ + 3467, 7680, + /* C1p[6]/eps^6, polynomial in eps2 of order 0 */ + 38081, 61440, + }; real eps2 = sq(eps), d = eps; - c[1] = d*(eps2*(205*eps2-432)+768)/1536; - d *= eps; - c[2] = d*(eps2*(4005*eps2-4736)+3840)/12288; - d *= eps; - c[3] = d*(116-225*eps2)/384; - d *= eps; - c[4] = d*(2695-7173*eps2)/7680; - d *= eps; - c[5] = 3467*d/7680; - d *= eps; - c[6] = 38081*d/61440; + int o = 0, l; + for (l = 1; l <= nC1p; ++l) { /* l is index of C1p[l] */ + int m = (nC1p - l) / 2; /* order of polynomial in eps^2 */ + c[l] = d * polyval(m, coeff + o, eps2) / coeff[o + m + 1]; + o += m + 2; + d *= eps; + } } /* The scale factor A2-1 = mean value of (d/dsigma)I2 - 1 */ real A2m1f(real eps) { - real - eps2 = sq(eps), - t = eps2*(eps2*(25*eps2+36)+64)/256; + static const real coeff[] = { + /* A2/(1-eps)-1, polynomial in eps2 of order 3 */ + 25, 36, 64, 0, 256, + }; + int m = nA2/2; + real t = polyval(m, coeff, sq(eps)) / coeff[m + 1]; return t * (1 - eps) - eps; } /* The coefficients C2[l] in the Fourier expansion of B2 */ void C2f(real eps, real c[]) { + static const real coeff[] = { + /* C2[1]/eps^1, polynomial in eps2 of order 2 */ + 1, 2, 16, 32, + /* C2[2]/eps^2, polynomial in eps2 of order 2 */ + 35, 64, 384, 2048, + /* C2[3]/eps^3, polynomial in eps2 of order 1 */ + 15, 80, 768, + /* C2[4]/eps^4, polynomial in eps2 of order 1 */ + 7, 35, 512, + /* C2[5]/eps^5, polynomial in eps2 of order 0 */ + 63, 1280, + /* C2[6]/eps^6, polynomial in eps2 of order 0 */ + 77, 2048, + }; real eps2 = sq(eps), d = eps; - c[1] = d*(eps2*(eps2+2)+16)/32; - d *= eps; - c[2] = d*(eps2*(35*eps2+64)+384)/2048; - d *= eps; - c[3] = d*(15*eps2+80)/768; - d *= eps; - c[4] = d*(7*eps2+35)/512; - d *= eps; - c[5] = 63*d/1280; - d *= eps; - c[6] = 77*d/2048; + int o = 0, l; + for (l = 1; l <= nC2; ++l) { /* l is index of C2[l] */ + int m = (nC2 - l) / 2; /* order of polynomial in eps^2 */ + c[l] = d * polyval(m, coeff + o, eps2) / coeff[o + m + 1]; + o += m + 2; + d *= eps; + } } /* The scale factor A3 = mean value of (d/dsigma)I3 */ void A3coeff(struct geod_geodesic* g) { - g->A3x[0] = 1; - g->A3x[1] = (g->n-1)/2; - g->A3x[2] = (g->n*(3*g->n-1)-2)/8; - g->A3x[3] = ((-g->n-3)*g->n-1)/16; - g->A3x[4] = (-2*g->n-3)/64; - g->A3x[5] = -3/(real)(128); + static const real coeff[] = { + /* A3, coeff of eps^5, polynomial in n of order 0 */ + -3, 128, + /* A3, coeff of eps^4, polynomial in n of order 1 */ + -2, -3, 64, + /* A3, coeff of eps^3, polynomial in n of order 2 */ + -1, -3, -1, 16, + /* A3, coeff of eps^2, polynomial in n of order 2 */ + 3, -1, -2, 8, + /* A3, coeff of eps^1, polynomial in n of order 1 */ + 1, -1, 2, + /* A3, coeff of eps^0, polynomial in n of order 0 */ + 1, 1, + }; + int o = 0, k = 0, j; + for (j = nA3 - 1; j >= 0; --j) { /* coeff of eps^j */ + int m = nA3 - j - 1 < j ? nA3 - j - 1 : j; /* order of polynomial in n */ + g->A3x[k++] = polyval(m, coeff + o, g->n) / coeff[o + m + 1]; + o += m + 2; + } } /* The coefficients C3[l] in the Fourier expansion of B3 */ void C3coeff(struct geod_geodesic* g) { - g->C3x[0] = (1-g->n)/4; - g->C3x[1] = (1-g->n*g->n)/8; - g->C3x[2] = ((3-g->n)*g->n+3)/64; - g->C3x[3] = (2*g->n+5)/128; - g->C3x[4] = 3/(real)(128); - g->C3x[5] = ((g->n-3)*g->n+2)/32; - g->C3x[6] = ((-3*g->n-2)*g->n+3)/64; - g->C3x[7] = (g->n+3)/128; - g->C3x[8] = 5/(real)(256); - g->C3x[9] = (g->n*(5*g->n-9)+5)/192; - g->C3x[10] = (9-10*g->n)/384; - g->C3x[11] = 7/(real)(512); - g->C3x[12] = (7-14*g->n)/512; - g->C3x[13] = 7/(real)(512); - g->C3x[14] = 21/(real)(2560); + static const real coeff[] = { + /* C3[1], coeff of eps^5, polynomial in n of order 0 */ + 3, 128, + /* C3[1], coeff of eps^4, polynomial in n of order 1 */ + 2, 5, 128, + /* C3[1], coeff of eps^3, polynomial in n of order 2 */ + -1, 3, 3, 64, + /* C3[1], coeff of eps^2, polynomial in n of order 2 */ + -1, 0, 1, 8, + /* C3[1], coeff of eps^1, polynomial in n of order 1 */ + -1, 1, 4, + /* C3[2], coeff of eps^5, polynomial in n of order 0 */ + 5, 256, + /* C3[2], coeff of eps^4, polynomial in n of order 1 */ + 1, 3, 128, + /* C3[2], coeff of eps^3, polynomial in n of order 2 */ + -3, -2, 3, 64, + /* C3[2], coeff of eps^2, polynomial in n of order 2 */ + 1, -3, 2, 32, + /* C3[3], coeff of eps^5, polynomial in n of order 0 */ + 7, 512, + /* C3[3], coeff of eps^4, polynomial in n of order 1 */ + -10, 9, 384, + /* C3[3], coeff of eps^3, polynomial in n of order 2 */ + 5, -9, 5, 192, + /* C3[4], coeff of eps^5, polynomial in n of order 0 */ + 7, 512, + /* C3[4], coeff of eps^4, polynomial in n of order 1 */ + -14, 7, 512, + /* C3[5], coeff of eps^5, polynomial in n of order 0 */ + 21, 2560, + }; + int o = 0, k = 0, l, j; + for (l = 1; l < nC3; ++l) { /* l is index of C3[l] */ + for (j = nC3 - 1; j >= l; --j) { /* coeff of eps^j */ + int m = nC3 - j - 1 < j ? nC3 - j - 1 : j; /* order of polynomial in n */ + g->C3x[k++] = polyval(m, coeff + o, g->n) / coeff[o + m + 1]; + o += m + 2; + } + } } -/* Generated by Maxima on 2012-10-19 08:02:34-04:00 */ - /* The coefficients C4[l] in the Fourier expansion of I4 */ void C4coeff(struct geod_geodesic* g) { - g->C4x[0] = (g->n*(g->n*(g->n*(g->n*(100*g->n+208)+572)+3432)-12012)+30030)/ - 45045; - g->C4x[1] = (g->n*(g->n*(g->n*(64*g->n+624)-4576)+6864)-3003)/15015; - g->C4x[2] = (g->n*((14144-10656*g->n)*g->n-4576)-858)/45045; - g->C4x[3] = ((-224*g->n-4784)*g->n+1573)/45045; - g->C4x[4] = (1088*g->n+156)/45045; - g->C4x[5] = 97/(real)(15015); - g->C4x[6] = (g->n*(g->n*((-64*g->n-624)*g->n+4576)-6864)+3003)/135135; - g->C4x[7] = (g->n*(g->n*(5952*g->n-11648)+9152)-2574)/135135; - g->C4x[8] = (g->n*(5792*g->n+1040)-1287)/135135; - g->C4x[9] = (468-2944*g->n)/135135; - g->C4x[10] = 1/(real)(9009); - g->C4x[11] = (g->n*((4160-1440*g->n)*g->n-4576)+1716)/225225; - g->C4x[12] = ((4992-8448*g->n)*g->n-1144)/225225; - g->C4x[13] = (1856*g->n-936)/225225; - g->C4x[14] = 8/(real)(10725); - g->C4x[15] = (g->n*(3584*g->n-3328)+1144)/315315; - g->C4x[16] = (1024*g->n-208)/105105; - g->C4x[17] = -136/(real)(63063); - g->C4x[18] = (832-2560*g->n)/405405; - g->C4x[19] = -128/(real)(135135); - g->C4x[20] = 128/(real)(99099); + static const real coeff[] = { + /* C4[0], coeff of eps^5, polynomial in n of order 0 */ + 97, 15015, + /* C4[0], coeff of eps^4, polynomial in n of order 1 */ + 1088, 156, 45045, + /* C4[0], coeff of eps^3, polynomial in n of order 2 */ + -224, -4784, 1573, 45045, + /* C4[0], coeff of eps^2, polynomial in n of order 3 */ + -10656, 14144, -4576, -858, 45045, + /* C4[0], coeff of eps^1, polynomial in n of order 4 */ + 64, 624, -4576, 6864, -3003, 15015, + /* C4[0], coeff of eps^0, polynomial in n of order 5 */ + 100, 208, 572, 3432, -12012, 30030, 45045, + /* C4[1], coeff of eps^5, polynomial in n of order 0 */ + 1, 9009, + /* C4[1], coeff of eps^4, polynomial in n of order 1 */ + -2944, 468, 135135, + /* C4[1], coeff of eps^3, polynomial in n of order 2 */ + 5792, 1040, -1287, 135135, + /* C4[1], coeff of eps^2, polynomial in n of order 3 */ + 5952, -11648, 9152, -2574, 135135, + /* C4[1], coeff of eps^1, polynomial in n of order 4 */ + -64, -624, 4576, -6864, 3003, 135135, + /* C4[2], coeff of eps^5, polynomial in n of order 0 */ + 8, 10725, + /* C4[2], coeff of eps^4, polynomial in n of order 1 */ + 1856, -936, 225225, + /* C4[2], coeff of eps^3, polynomial in n of order 2 */ + -8448, 4992, -1144, 225225, + /* C4[2], coeff of eps^2, polynomial in n of order 3 */ + -1440, 4160, -4576, 1716, 225225, + /* C4[3], coeff of eps^5, polynomial in n of order 0 */ + -136, 63063, + /* C4[3], coeff of eps^4, polynomial in n of order 1 */ + 1024, -208, 105105, + /* C4[3], coeff of eps^3, polynomial in n of order 2 */ + 3584, -3328, 1144, 315315, + /* C4[4], coeff of eps^5, polynomial in n of order 0 */ + -128, 135135, + /* C4[4], coeff of eps^4, polynomial in n of order 1 */ + -2560, 832, 405405, + /* C4[5], coeff of eps^5, polynomial in n of order 0 */ + 128, 99099, + }; + int o = 0, k = 0, l, j; + for (l = 0; l < nC4; ++l) { /* l is index of C4[l] */ + for (j = nC4 - 1; j >= l; --j) { /* coeff of eps^j */ + int m = nC4 - j - 1; /* order of polynomial in n */ + g->C4x[k++] = polyval(m, coeff + o, g->n) / coeff[o + m + 1]; + o += m + 2; + } + } } int transit(real lon1, real lon2) { @@ -1594,7 +1692,7 @@ void geod_polygon_addedge(const struct geod_geodesic* g, real azi, real s) { if (p->num) { /* Do nothing is num is zero */ real lat, lon, S12; - geod_gendirect(g, p->lat, p->lon, azi, GEOD_LONG_NOWRAP, s, + geod_gendirect(g, p->lat, p->lon, azi, GEOD_LONG_UNROLL, s, &lat, &lon, 0, 0, 0, 0, 0, p->polyline ? 0 : &S12); accadd(p->P, s); @@ -1731,7 +1829,7 @@ unsigned geod_polygon_testedge(const struct geod_geodesic* g, crossings = p->crossings; { real lat, lon, s12, S12; - geod_gendirect(g, p->lat, p->lon, azi, GEOD_LONG_NOWRAP, s, + geod_gendirect(g, p->lat, p->lon, azi, GEOD_LONG_UNROLL, s, &lat, &lon, 0, 0, 0, 0, 0, &S12); tempsum += S12; |
