aboutsummaryrefslogtreecommitdiff
path: root/src/projections/qsc.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/projections/qsc.cpp')
-rw-r--r--src/projections/qsc.cpp408
1 files changed, 408 insertions, 0 deletions
diff --git a/src/projections/qsc.cpp b/src/projections/qsc.cpp
new file mode 100644
index 00000000..b50a7c95
--- /dev/null
+++ b/src/projections/qsc.cpp
@@ -0,0 +1,408 @@
+/*
+ * This implements the Quadrilateralized Spherical Cube (QSC) projection.
+ *
+ * Copyright (c) 2011, 2012 Martin Lambers <marlam@marlam.de>
+ *
+ * The QSC projection was introduced in:
+ * [OL76]
+ * E.M. O'Neill and R.E. Laubscher, "Extended Studies of a Quadrilateralized
+ * Spherical Cube Earth Data Base", Naval Environmental Prediction Research
+ * Facility Tech. Report NEPRF 3-76 (CSC), May 1976.
+ *
+ * The preceding shift from an ellipsoid to a sphere, which allows to apply
+ * this projection to ellipsoids as used in the Ellipsoidal Cube Map model,
+ * is described in
+ * [LK12]
+ * M. Lambers and A. Kolb, "Ellipsoidal Cube Maps for Accurate Rendering of
+ * Planetary-Scale Terrain Data", Proc. Pacific Graphics (Short Papers), Sep.
+ * 2012
+ *
+ * You have to choose one of the following projection centers,
+ * corresponding to the centers of the six cube faces:
+ * phi0 = 0.0, lam0 = 0.0 ("front" face)
+ * phi0 = 0.0, lam0 = 90.0 ("right" face)
+ * phi0 = 0.0, lam0 = 180.0 ("back" face)
+ * phi0 = 0.0, lam0 = -90.0 ("left" face)
+ * phi0 = 90.0 ("top" face)
+ * phi0 = -90.0 ("bottom" face)
+ * Other projection centers will not work!
+ *
+ * In the projection code below, each cube face is handled differently.
+ * See the computation of the face parameter in the PROJECTION(qsc) function
+ * and the handling of different face values (FACE_*) in the forward and
+ * inverse projections.
+ *
+ * Furthermore, the projection is originally only defined for theta angles
+ * between (-1/4 * PI) and (+1/4 * PI) on the current cube face. This area
+ * of definition is named AREA_0 in the projection code below. The other
+ * three areas of a cube face are handled by rotation of AREA_0.
+ */
+
+#define PJ_LIB__
+
+#include <errno.h>
+#include <math.h>
+
+#include "projects.h"
+
+/* The six cube faces. */
+namespace { // anonymous namespace
+enum Face {
+ FACE_FRONT = 0,
+ FACE_RIGHT = 1,
+ FACE_BACK = 2,
+ FACE_LEFT = 3,
+ FACE_TOP = 4,
+ FACE_BOTTOM = 5
+};
+} // anonymous namespace
+
+namespace { // anonymous namespace
+struct pj_opaque {
+ enum Face face;
+ double a_squared;
+ double b;
+ double one_minus_f;
+ double one_minus_f_squared;
+};
+} // anonymous namespace
+PROJ_HEAD(qsc, "Quadrilateralized Spherical Cube") "\n\tAzi, Sph";
+
+#define EPS10 1.e-10
+
+/* The four areas on a cube face. AREA_0 is the area of definition,
+ * the other three areas are counted counterclockwise. */
+namespace { // anonymous namespace
+enum Area {
+ AREA_0 = 0,
+ AREA_1 = 1,
+ AREA_2 = 2,
+ AREA_3 = 3
+};
+} // anonymous namespace
+
+/* Helper function for forward projection: compute the theta angle
+ * and determine the area number. */
+static double qsc_fwd_equat_face_theta(double phi, double y, double x, enum Area *area) {
+ double theta;
+ if (phi < EPS10) {
+ *area = AREA_0;
+ theta = 0.0;
+ } else {
+ theta = atan2(y, x);
+ if (fabs(theta) <= M_FORTPI) {
+ *area = AREA_0;
+ } else if (theta > M_FORTPI && theta <= M_HALFPI + M_FORTPI) {
+ *area = AREA_1;
+ theta -= M_HALFPI;
+ } else if (theta > M_HALFPI + M_FORTPI || theta <= -(M_HALFPI + M_FORTPI)) {
+ *area = AREA_2;
+ theta = (theta >= 0.0 ? theta - M_PI : theta + M_PI);
+ } else {
+ *area = AREA_3;
+ theta += M_HALFPI;
+ }
+ }
+ return theta;
+}
+
+/* Helper function: shift the longitude. */
+static double qsc_shift_lon_origin(double lon, double offset) {
+ double slon = lon + offset;
+ if (slon < -M_PI) {
+ slon += M_TWOPI;
+ } else if (slon > +M_PI) {
+ slon -= M_TWOPI;
+ }
+ return slon;
+}
+
+
+static XY e_forward (LP lp, PJ *P) { /* Ellipsoidal, forward */
+ XY xy = {0.0,0.0};
+ struct pj_opaque *Q = static_cast<struct pj_opaque*>(P->opaque);
+ double lat, lon;
+ double theta, phi;
+ double t, mu; /* nu; */
+ enum Area area;
+
+ /* Convert the geodetic latitude to a geocentric latitude.
+ * This corresponds to the shift from the ellipsoid to the sphere
+ * described in [LK12]. */
+ if (P->es != 0.0) {
+ lat = atan(Q->one_minus_f_squared * tan(lp.phi));
+ } else {
+ lat = lp.phi;
+ }
+
+ /* Convert the input lat, lon into theta, phi as used by QSC.
+ * This depends on the cube face and the area on it.
+ * For the top and bottom face, we can compute theta and phi
+ * directly from phi, lam. For the other faces, we must use
+ * unit sphere cartesian coordinates as an intermediate step. */
+ lon = lp.lam;
+ if (Q->face == FACE_TOP) {
+ phi = M_HALFPI - lat;
+ if (lon >= M_FORTPI && lon <= M_HALFPI + M_FORTPI) {
+ area = AREA_0;
+ theta = lon - M_HALFPI;
+ } else if (lon > M_HALFPI + M_FORTPI || lon <= -(M_HALFPI + M_FORTPI)) {
+ area = AREA_1;
+ theta = (lon > 0.0 ? lon - M_PI : lon + M_PI);
+ } else if (lon > -(M_HALFPI + M_FORTPI) && lon <= -M_FORTPI) {
+ area = AREA_2;
+ theta = lon + M_HALFPI;
+ } else {
+ area = AREA_3;
+ theta = lon;
+ }
+ } else if (Q->face == FACE_BOTTOM) {
+ phi = M_HALFPI + lat;
+ if (lon >= M_FORTPI && lon <= M_HALFPI + M_FORTPI) {
+ area = AREA_0;
+ theta = -lon + M_HALFPI;
+ } else if (lon < M_FORTPI && lon >= -M_FORTPI) {
+ area = AREA_1;
+ theta = -lon;
+ } else if (lon < -M_FORTPI && lon >= -(M_HALFPI + M_FORTPI)) {
+ area = AREA_2;
+ theta = -lon - M_HALFPI;
+ } else {
+ area = AREA_3;
+ theta = (lon > 0.0 ? -lon + M_PI : -lon - M_PI);
+ }
+ } else {
+ double q, r, s;
+ double sinlat, coslat;
+ double sinlon, coslon;
+
+ if (Q->face == FACE_RIGHT) {
+ lon = qsc_shift_lon_origin(lon, +M_HALFPI);
+ } else if (Q->face == FACE_BACK) {
+ lon = qsc_shift_lon_origin(lon, +M_PI);
+ } else if (Q->face == FACE_LEFT) {
+ lon = qsc_shift_lon_origin(lon, -M_HALFPI);
+ }
+ sinlat = sin(lat);
+ coslat = cos(lat);
+ sinlon = sin(lon);
+ coslon = cos(lon);
+ q = coslat * coslon;
+ r = coslat * sinlon;
+ s = sinlat;
+
+ if (Q->face == FACE_FRONT) {
+ phi = acos(q);
+ theta = qsc_fwd_equat_face_theta(phi, s, r, &area);
+ } else if (Q->face == FACE_RIGHT) {
+ phi = acos(r);
+ theta = qsc_fwd_equat_face_theta(phi, s, -q, &area);
+ } else if (Q->face == FACE_BACK) {
+ phi = acos(-q);
+ theta = qsc_fwd_equat_face_theta(phi, s, -r, &area);
+ } else if (Q->face == FACE_LEFT) {
+ phi = acos(-r);
+ theta = qsc_fwd_equat_face_theta(phi, s, q, &area);
+ } else {
+ /* Impossible */
+ phi = theta = 0.0;
+ area = AREA_0;
+ }
+ }
+
+ /* Compute mu and nu for the area of definition.
+ * For mu, see Eq. (3-21) in [OL76], but note the typos:
+ * compare with Eq. (3-14). For nu, see Eq. (3-38). */
+ mu = atan((12.0 / M_PI) * (theta + acos(sin(theta) * cos(M_FORTPI)) - M_HALFPI));
+ t = sqrt((1.0 - cos(phi)) / (cos(mu) * cos(mu)) / (1.0 - cos(atan(1.0 / cos(theta)))));
+ /* nu = atan(t); We don't really need nu, just t, see below. */
+
+ /* Apply the result to the real area. */
+ if (area == AREA_1) {
+ mu += M_HALFPI;
+ } else if (area == AREA_2) {
+ mu += M_PI;
+ } else if (area == AREA_3) {
+ mu += M_PI_HALFPI;
+ }
+
+ /* Now compute x, y from mu and nu */
+ /* t = tan(nu); */
+ xy.x = t * cos(mu);
+ xy.y = t * sin(mu);
+ return xy;
+}
+
+
+static LP e_inverse (XY xy, PJ *P) { /* Ellipsoidal, inverse */
+ LP lp = {0.0,0.0};
+ struct pj_opaque *Q = static_cast<struct pj_opaque*>(P->opaque);
+ double mu, nu, cosmu, tannu;
+ double tantheta, theta, cosphi, phi;
+ double t;
+ int area;
+
+ /* Convert the input x, y to the mu and nu angles as used by QSC.
+ * This depends on the area of the cube face. */
+ nu = atan(sqrt(xy.x * xy.x + xy.y * xy.y));
+ mu = atan2(xy.y, xy.x);
+ if (xy.x >= 0.0 && xy.x >= fabs(xy.y)) {
+ area = AREA_0;
+ } else if (xy.y >= 0.0 && xy.y >= fabs(xy.x)) {
+ area = AREA_1;
+ mu -= M_HALFPI;
+ } else if (xy.x < 0.0 && -xy.x >= fabs(xy.y)) {
+ area = AREA_2;
+ mu = (mu < 0.0 ? mu + M_PI : mu - M_PI);
+ } else {
+ area = AREA_3;
+ mu += M_HALFPI;
+ }
+
+ /* Compute phi and theta for the area of definition.
+ * The inverse projection is not described in the original paper, but some
+ * good hints can be found here (as of 2011-12-14):
+ * http://fits.gsfc.nasa.gov/fitsbits/saf.93/saf.9302
+ * (search for "Message-Id: <9302181759.AA25477 at fits.cv.nrao.edu>") */
+ t = (M_PI / 12.0) * tan(mu);
+ tantheta = sin(t) / (cos(t) - (1.0 / sqrt(2.0)));
+ theta = atan(tantheta);
+ cosmu = cos(mu);
+ tannu = tan(nu);
+ cosphi = 1.0 - cosmu * cosmu * tannu * tannu * (1.0 - cos(atan(1.0 / cos(theta))));
+ if (cosphi < -1.0) {
+ cosphi = -1.0;
+ } else if (cosphi > +1.0) {
+ cosphi = +1.0;
+ }
+
+ /* Apply the result to the real area on the cube face.
+ * For the top and bottom face, we can compute phi and lam directly.
+ * For the other faces, we must use unit sphere cartesian coordinates
+ * as an intermediate step. */
+ if (Q->face == FACE_TOP) {
+ phi = acos(cosphi);
+ lp.phi = M_HALFPI - phi;
+ if (area == AREA_0) {
+ lp.lam = theta + M_HALFPI;
+ } else if (area == AREA_1) {
+ lp.lam = (theta < 0.0 ? theta + M_PI : theta - M_PI);
+ } else if (area == AREA_2) {
+ lp.lam = theta - M_HALFPI;
+ } else /* area == AREA_3 */ {
+ lp.lam = theta;
+ }
+ } else if (Q->face == FACE_BOTTOM) {
+ phi = acos(cosphi);
+ lp.phi = phi - M_HALFPI;
+ if (area == AREA_0) {
+ lp.lam = -theta + M_HALFPI;
+ } else if (area == AREA_1) {
+ lp.lam = -theta;
+ } else if (area == AREA_2) {
+ lp.lam = -theta - M_HALFPI;
+ } else /* area == AREA_3 */ {
+ lp.lam = (theta < 0.0 ? -theta - M_PI : -theta + M_PI);
+ }
+ } else {
+ /* Compute phi and lam via cartesian unit sphere coordinates. */
+ double q, r, s;
+ q = cosphi;
+ t = q * q;
+ if (t >= 1.0) {
+ s = 0.0;
+ } else {
+ s = sqrt(1.0 - t) * sin(theta);
+ }
+ t += s * s;
+ if (t >= 1.0) {
+ r = 0.0;
+ } else {
+ r = sqrt(1.0 - t);
+ }
+ /* Rotate q,r,s into the correct area. */
+ if (area == AREA_1) {
+ t = r;
+ r = -s;
+ s = t;
+ } else if (area == AREA_2) {
+ r = -r;
+ s = -s;
+ } else if (area == AREA_3) {
+ t = r;
+ r = s;
+ s = -t;
+ }
+ /* Rotate q,r,s into the correct cube face. */
+ if (Q->face == FACE_RIGHT) {
+ t = q;
+ q = -r;
+ r = t;
+ } else if (Q->face == FACE_BACK) {
+ q = -q;
+ r = -r;
+ } else if (Q->face == FACE_LEFT) {
+ t = q;
+ q = r;
+ r = -t;
+ }
+ /* Now compute phi and lam from the unit sphere coordinates. */
+ lp.phi = acos(-s) - M_HALFPI;
+ lp.lam = atan2(r, q);
+ if (Q->face == FACE_RIGHT) {
+ lp.lam = qsc_shift_lon_origin(lp.lam, -M_HALFPI);
+ } else if (Q->face == FACE_BACK) {
+ lp.lam = qsc_shift_lon_origin(lp.lam, -M_PI);
+ } else if (Q->face == FACE_LEFT) {
+ lp.lam = qsc_shift_lon_origin(lp.lam, +M_HALFPI);
+ }
+ }
+
+ /* Apply the shift from the sphere to the ellipsoid as described
+ * in [LK12]. */
+ if (P->es != 0.0) {
+ int invert_sign;
+ double tanphi, xa;
+ invert_sign = (lp.phi < 0.0 ? 1 : 0);
+ tanphi = tan(lp.phi);
+ xa = Q->b / sqrt(tanphi * tanphi + Q->one_minus_f_squared);
+ lp.phi = atan(sqrt(P->a * P->a - xa * xa) / (Q->one_minus_f * xa));
+ if (invert_sign) {
+ lp.phi = -lp.phi;
+ }
+ }
+ return lp;
+}
+
+
+PJ *PROJECTION(qsc) {
+ struct pj_opaque *Q = static_cast<struct pj_opaque*>(pj_calloc (1, sizeof (struct pj_opaque)));
+ if (nullptr==Q)
+ return pj_default_destructor (P, ENOMEM);
+ P->opaque = Q;
+
+ P->inv = e_inverse;
+ P->fwd = e_forward;
+ /* Determine the cube face from the center of projection. */
+ if (P->phi0 >= M_HALFPI - M_FORTPI / 2.0) {
+ Q->face = FACE_TOP;
+ } else if (P->phi0 <= -(M_HALFPI - M_FORTPI / 2.0)) {
+ Q->face = FACE_BOTTOM;
+ } else if (fabs(P->lam0) <= M_FORTPI) {
+ Q->face = FACE_FRONT;
+ } else if (fabs(P->lam0) <= M_HALFPI + M_FORTPI) {
+ Q->face = (P->lam0 > 0.0 ? FACE_RIGHT : FACE_LEFT);
+ } else {
+ Q->face = FACE_BACK;
+ }
+ /* Fill in useful values for the ellipsoid <-> sphere shift
+ * described in [LK12]. */
+ if (P->es != 0.0) {
+ Q->a_squared = P->a * P->a;
+ Q->b = P->a * sqrt(1.0 - P->es);
+ Q->one_minus_f = 1.0 - (P->a - Q->b) / P->a;
+ Q->one_minus_f_squared = Q->one_minus_f * Q->one_minus_f;
+ }
+
+ return P;
+}