diff options
Diffstat (limited to 'src/projections/qsc.cpp')
| -rw-r--r-- | src/projections/qsc.cpp | 408 |
1 files changed, 408 insertions, 0 deletions
diff --git a/src/projections/qsc.cpp b/src/projections/qsc.cpp new file mode 100644 index 00000000..b50a7c95 --- /dev/null +++ b/src/projections/qsc.cpp @@ -0,0 +1,408 @@ +/* + * This implements the Quadrilateralized Spherical Cube (QSC) projection. + * + * Copyright (c) 2011, 2012 Martin Lambers <marlam@marlam.de> + * + * The QSC projection was introduced in: + * [OL76] + * E.M. O'Neill and R.E. Laubscher, "Extended Studies of a Quadrilateralized + * Spherical Cube Earth Data Base", Naval Environmental Prediction Research + * Facility Tech. Report NEPRF 3-76 (CSC), May 1976. + * + * The preceding shift from an ellipsoid to a sphere, which allows to apply + * this projection to ellipsoids as used in the Ellipsoidal Cube Map model, + * is described in + * [LK12] + * M. Lambers and A. Kolb, "Ellipsoidal Cube Maps for Accurate Rendering of + * Planetary-Scale Terrain Data", Proc. Pacific Graphics (Short Papers), Sep. + * 2012 + * + * You have to choose one of the following projection centers, + * corresponding to the centers of the six cube faces: + * phi0 = 0.0, lam0 = 0.0 ("front" face) + * phi0 = 0.0, lam0 = 90.0 ("right" face) + * phi0 = 0.0, lam0 = 180.0 ("back" face) + * phi0 = 0.0, lam0 = -90.0 ("left" face) + * phi0 = 90.0 ("top" face) + * phi0 = -90.0 ("bottom" face) + * Other projection centers will not work! + * + * In the projection code below, each cube face is handled differently. + * See the computation of the face parameter in the PROJECTION(qsc) function + * and the handling of different face values (FACE_*) in the forward and + * inverse projections. + * + * Furthermore, the projection is originally only defined for theta angles + * between (-1/4 * PI) and (+1/4 * PI) on the current cube face. This area + * of definition is named AREA_0 in the projection code below. The other + * three areas of a cube face are handled by rotation of AREA_0. + */ + +#define PJ_LIB__ + +#include <errno.h> +#include <math.h> + +#include "projects.h" + +/* The six cube faces. */ +namespace { // anonymous namespace +enum Face { + FACE_FRONT = 0, + FACE_RIGHT = 1, + FACE_BACK = 2, + FACE_LEFT = 3, + FACE_TOP = 4, + FACE_BOTTOM = 5 +}; +} // anonymous namespace + +namespace { // anonymous namespace +struct pj_opaque { + enum Face face; + double a_squared; + double b; + double one_minus_f; + double one_minus_f_squared; +}; +} // anonymous namespace +PROJ_HEAD(qsc, "Quadrilateralized Spherical Cube") "\n\tAzi, Sph"; + +#define EPS10 1.e-10 + +/* The four areas on a cube face. AREA_0 is the area of definition, + * the other three areas are counted counterclockwise. */ +namespace { // anonymous namespace +enum Area { + AREA_0 = 0, + AREA_1 = 1, + AREA_2 = 2, + AREA_3 = 3 +}; +} // anonymous namespace + +/* Helper function for forward projection: compute the theta angle + * and determine the area number. */ +static double qsc_fwd_equat_face_theta(double phi, double y, double x, enum Area *area) { + double theta; + if (phi < EPS10) { + *area = AREA_0; + theta = 0.0; + } else { + theta = atan2(y, x); + if (fabs(theta) <= M_FORTPI) { + *area = AREA_0; + } else if (theta > M_FORTPI && theta <= M_HALFPI + M_FORTPI) { + *area = AREA_1; + theta -= M_HALFPI; + } else if (theta > M_HALFPI + M_FORTPI || theta <= -(M_HALFPI + M_FORTPI)) { + *area = AREA_2; + theta = (theta >= 0.0 ? theta - M_PI : theta + M_PI); + } else { + *area = AREA_3; + theta += M_HALFPI; + } + } + return theta; +} + +/* Helper function: shift the longitude. */ +static double qsc_shift_lon_origin(double lon, double offset) { + double slon = lon + offset; + if (slon < -M_PI) { + slon += M_TWOPI; + } else if (slon > +M_PI) { + slon -= M_TWOPI; + } + return slon; +} + + +static XY e_forward (LP lp, PJ *P) { /* Ellipsoidal, forward */ + XY xy = {0.0,0.0}; + struct pj_opaque *Q = static_cast<struct pj_opaque*>(P->opaque); + double lat, lon; + double theta, phi; + double t, mu; /* nu; */ + enum Area area; + + /* Convert the geodetic latitude to a geocentric latitude. + * This corresponds to the shift from the ellipsoid to the sphere + * described in [LK12]. */ + if (P->es != 0.0) { + lat = atan(Q->one_minus_f_squared * tan(lp.phi)); + } else { + lat = lp.phi; + } + + /* Convert the input lat, lon into theta, phi as used by QSC. + * This depends on the cube face and the area on it. + * For the top and bottom face, we can compute theta and phi + * directly from phi, lam. For the other faces, we must use + * unit sphere cartesian coordinates as an intermediate step. */ + lon = lp.lam; + if (Q->face == FACE_TOP) { + phi = M_HALFPI - lat; + if (lon >= M_FORTPI && lon <= M_HALFPI + M_FORTPI) { + area = AREA_0; + theta = lon - M_HALFPI; + } else if (lon > M_HALFPI + M_FORTPI || lon <= -(M_HALFPI + M_FORTPI)) { + area = AREA_1; + theta = (lon > 0.0 ? lon - M_PI : lon + M_PI); + } else if (lon > -(M_HALFPI + M_FORTPI) && lon <= -M_FORTPI) { + area = AREA_2; + theta = lon + M_HALFPI; + } else { + area = AREA_3; + theta = lon; + } + } else if (Q->face == FACE_BOTTOM) { + phi = M_HALFPI + lat; + if (lon >= M_FORTPI && lon <= M_HALFPI + M_FORTPI) { + area = AREA_0; + theta = -lon + M_HALFPI; + } else if (lon < M_FORTPI && lon >= -M_FORTPI) { + area = AREA_1; + theta = -lon; + } else if (lon < -M_FORTPI && lon >= -(M_HALFPI + M_FORTPI)) { + area = AREA_2; + theta = -lon - M_HALFPI; + } else { + area = AREA_3; + theta = (lon > 0.0 ? -lon + M_PI : -lon - M_PI); + } + } else { + double q, r, s; + double sinlat, coslat; + double sinlon, coslon; + + if (Q->face == FACE_RIGHT) { + lon = qsc_shift_lon_origin(lon, +M_HALFPI); + } else if (Q->face == FACE_BACK) { + lon = qsc_shift_lon_origin(lon, +M_PI); + } else if (Q->face == FACE_LEFT) { + lon = qsc_shift_lon_origin(lon, -M_HALFPI); + } + sinlat = sin(lat); + coslat = cos(lat); + sinlon = sin(lon); + coslon = cos(lon); + q = coslat * coslon; + r = coslat * sinlon; + s = sinlat; + + if (Q->face == FACE_FRONT) { + phi = acos(q); + theta = qsc_fwd_equat_face_theta(phi, s, r, &area); + } else if (Q->face == FACE_RIGHT) { + phi = acos(r); + theta = qsc_fwd_equat_face_theta(phi, s, -q, &area); + } else if (Q->face == FACE_BACK) { + phi = acos(-q); + theta = qsc_fwd_equat_face_theta(phi, s, -r, &area); + } else if (Q->face == FACE_LEFT) { + phi = acos(-r); + theta = qsc_fwd_equat_face_theta(phi, s, q, &area); + } else { + /* Impossible */ + phi = theta = 0.0; + area = AREA_0; + } + } + + /* Compute mu and nu for the area of definition. + * For mu, see Eq. (3-21) in [OL76], but note the typos: + * compare with Eq. (3-14). For nu, see Eq. (3-38). */ + mu = atan((12.0 / M_PI) * (theta + acos(sin(theta) * cos(M_FORTPI)) - M_HALFPI)); + t = sqrt((1.0 - cos(phi)) / (cos(mu) * cos(mu)) / (1.0 - cos(atan(1.0 / cos(theta))))); + /* nu = atan(t); We don't really need nu, just t, see below. */ + + /* Apply the result to the real area. */ + if (area == AREA_1) { + mu += M_HALFPI; + } else if (area == AREA_2) { + mu += M_PI; + } else if (area == AREA_3) { + mu += M_PI_HALFPI; + } + + /* Now compute x, y from mu and nu */ + /* t = tan(nu); */ + xy.x = t * cos(mu); + xy.y = t * sin(mu); + return xy; +} + + +static LP e_inverse (XY xy, PJ *P) { /* Ellipsoidal, inverse */ + LP lp = {0.0,0.0}; + struct pj_opaque *Q = static_cast<struct pj_opaque*>(P->opaque); + double mu, nu, cosmu, tannu; + double tantheta, theta, cosphi, phi; + double t; + int area; + + /* Convert the input x, y to the mu and nu angles as used by QSC. + * This depends on the area of the cube face. */ + nu = atan(sqrt(xy.x * xy.x + xy.y * xy.y)); + mu = atan2(xy.y, xy.x); + if (xy.x >= 0.0 && xy.x >= fabs(xy.y)) { + area = AREA_0; + } else if (xy.y >= 0.0 && xy.y >= fabs(xy.x)) { + area = AREA_1; + mu -= M_HALFPI; + } else if (xy.x < 0.0 && -xy.x >= fabs(xy.y)) { + area = AREA_2; + mu = (mu < 0.0 ? mu + M_PI : mu - M_PI); + } else { + area = AREA_3; + mu += M_HALFPI; + } + + /* Compute phi and theta for the area of definition. + * The inverse projection is not described in the original paper, but some + * good hints can be found here (as of 2011-12-14): + * http://fits.gsfc.nasa.gov/fitsbits/saf.93/saf.9302 + * (search for "Message-Id: <9302181759.AA25477 at fits.cv.nrao.edu>") */ + t = (M_PI / 12.0) * tan(mu); + tantheta = sin(t) / (cos(t) - (1.0 / sqrt(2.0))); + theta = atan(tantheta); + cosmu = cos(mu); + tannu = tan(nu); + cosphi = 1.0 - cosmu * cosmu * tannu * tannu * (1.0 - cos(atan(1.0 / cos(theta)))); + if (cosphi < -1.0) { + cosphi = -1.0; + } else if (cosphi > +1.0) { + cosphi = +1.0; + } + + /* Apply the result to the real area on the cube face. + * For the top and bottom face, we can compute phi and lam directly. + * For the other faces, we must use unit sphere cartesian coordinates + * as an intermediate step. */ + if (Q->face == FACE_TOP) { + phi = acos(cosphi); + lp.phi = M_HALFPI - phi; + if (area == AREA_0) { + lp.lam = theta + M_HALFPI; + } else if (area == AREA_1) { + lp.lam = (theta < 0.0 ? theta + M_PI : theta - M_PI); + } else if (area == AREA_2) { + lp.lam = theta - M_HALFPI; + } else /* area == AREA_3 */ { + lp.lam = theta; + } + } else if (Q->face == FACE_BOTTOM) { + phi = acos(cosphi); + lp.phi = phi - M_HALFPI; + if (area == AREA_0) { + lp.lam = -theta + M_HALFPI; + } else if (area == AREA_1) { + lp.lam = -theta; + } else if (area == AREA_2) { + lp.lam = -theta - M_HALFPI; + } else /* area == AREA_3 */ { + lp.lam = (theta < 0.0 ? -theta - M_PI : -theta + M_PI); + } + } else { + /* Compute phi and lam via cartesian unit sphere coordinates. */ + double q, r, s; + q = cosphi; + t = q * q; + if (t >= 1.0) { + s = 0.0; + } else { + s = sqrt(1.0 - t) * sin(theta); + } + t += s * s; + if (t >= 1.0) { + r = 0.0; + } else { + r = sqrt(1.0 - t); + } + /* Rotate q,r,s into the correct area. */ + if (area == AREA_1) { + t = r; + r = -s; + s = t; + } else if (area == AREA_2) { + r = -r; + s = -s; + } else if (area == AREA_3) { + t = r; + r = s; + s = -t; + } + /* Rotate q,r,s into the correct cube face. */ + if (Q->face == FACE_RIGHT) { + t = q; + q = -r; + r = t; + } else if (Q->face == FACE_BACK) { + q = -q; + r = -r; + } else if (Q->face == FACE_LEFT) { + t = q; + q = r; + r = -t; + } + /* Now compute phi and lam from the unit sphere coordinates. */ + lp.phi = acos(-s) - M_HALFPI; + lp.lam = atan2(r, q); + if (Q->face == FACE_RIGHT) { + lp.lam = qsc_shift_lon_origin(lp.lam, -M_HALFPI); + } else if (Q->face == FACE_BACK) { + lp.lam = qsc_shift_lon_origin(lp.lam, -M_PI); + } else if (Q->face == FACE_LEFT) { + lp.lam = qsc_shift_lon_origin(lp.lam, +M_HALFPI); + } + } + + /* Apply the shift from the sphere to the ellipsoid as described + * in [LK12]. */ + if (P->es != 0.0) { + int invert_sign; + double tanphi, xa; + invert_sign = (lp.phi < 0.0 ? 1 : 0); + tanphi = tan(lp.phi); + xa = Q->b / sqrt(tanphi * tanphi + Q->one_minus_f_squared); + lp.phi = atan(sqrt(P->a * P->a - xa * xa) / (Q->one_minus_f * xa)); + if (invert_sign) { + lp.phi = -lp.phi; + } + } + return lp; +} + + +PJ *PROJECTION(qsc) { + struct pj_opaque *Q = static_cast<struct pj_opaque*>(pj_calloc (1, sizeof (struct pj_opaque))); + if (nullptr==Q) + return pj_default_destructor (P, ENOMEM); + P->opaque = Q; + + P->inv = e_inverse; + P->fwd = e_forward; + /* Determine the cube face from the center of projection. */ + if (P->phi0 >= M_HALFPI - M_FORTPI / 2.0) { + Q->face = FACE_TOP; + } else if (P->phi0 <= -(M_HALFPI - M_FORTPI / 2.0)) { + Q->face = FACE_BOTTOM; + } else if (fabs(P->lam0) <= M_FORTPI) { + Q->face = FACE_FRONT; + } else if (fabs(P->lam0) <= M_HALFPI + M_FORTPI) { + Q->face = (P->lam0 > 0.0 ? FACE_RIGHT : FACE_LEFT); + } else { + Q->face = FACE_BACK; + } + /* Fill in useful values for the ellipsoid <-> sphere shift + * described in [LK12]. */ + if (P->es != 0.0) { + Q->a_squared = P->a * P->a; + Q->b = P->a * sqrt(1.0 - P->es); + Q->one_minus_f = 1.0 - (P->a - Q->b) / P->a; + Q->one_minus_f_squared = Q->one_minus_f * Q->one_minus_f; + } + + return P; +} |
