diff options
Diffstat (limited to 'test/unit/test_defmodel.cpp')
| -rw-r--r-- | test/unit/test_defmodel.cpp | 1515 |
1 files changed, 1515 insertions, 0 deletions
diff --git a/test/unit/test_defmodel.cpp b/test/unit/test_defmodel.cpp new file mode 100644 index 00000000..b3228fd0 --- /dev/null +++ b/test/unit/test_defmodel.cpp @@ -0,0 +1,1515 @@ +/****************************************************************************** + * + * Project: PROJ + * Purpose: Test deformation model + * Author: Even Rouault <even dot rouault at spatialys dot com> + * + ****************************************************************************** + * Copyright (c) 2020, Even Rouault <even dot rouault at spatialys dot com> + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER + * DEALINGS IN THE SOFTWARE. + ****************************************************************************/ + +#include "gtest_include.h" + +// to be able to use internal::toString +#define FROM_PROJ_CPP +#include "proj/internal/internal.hpp" + +#include "proj.h" +#include "proj_internal.h" + +// Silence C4702 (unreachable code) due to some dummy implementation of the +// interfaces of defmodel.hpp +#ifdef _MSC_VER +#pragma warning(push) +#pragma warning(disable : 4702) +#endif + +#define PROJ_COMPILATION +#define DEFORMATON_MODEL_NAMESPACE TestDeformationModel +#include "transformations/defmodel.hpp" + +using namespace DEFORMATON_MODEL_NAMESPACE; + +namespace { + +constexpr double modelMinX = 158; +constexpr double modelMinY = -58; +constexpr double modelMaxX = 194; +constexpr double modelMaxY = -25; + +static json getMinValidContent() { + json j; + j["file_type"] = "GeoTIFF"; + j["format_version"] = "1.0"; + j["source_crs"] = "EPSG:4959"; + j["target_crs"] = "EPSG:7907"; + j["definition_crs"] = "EPSG:4959"; + j["extent"]["type"] = "bbox"; + j["extent"] + ["parameters"] = {{"bbox", {modelMinX, modelMinY, modelMaxX, modelMaxY}}}; + j["time_extent"]["first"] = "1900-01-01T00:00:00Z"; + j["time_extent"]["last"] = "2050-01-01T00:00:00Z"; + j["components"] = json::array(); + + return j; +} + +// --------------------------------------------------------------------------- + +constexpr int IDX_CONSTANT = 0; +constexpr int IDX_VELOCITY = 1; +constexpr int IDX_STEP = 2; +constexpr int IDX_REVERSE_STEP = 3; +constexpr int IDX_PIECEWISE = 4; +constexpr int IDX_EXPONENTIAL = 5; + +static json getFullValidContent() { + json j(getMinValidContent()); + j["name"] = "name"; + j["version"] = "version"; + j["publication_date"] = "2018-07-01T00:00:00Z"; + j["license"] = "license"; + j["description"] = "description"; + j["authority"]["name"] = "authority_name"; + j["authority"]["url"] = "authority_url"; + j["authority"]["address"] = "authority_address"; + j["authority"]["email"] = "authority_email"; + j["links"] = {{{"href", "href"}, + {"rel", "rel"}, + {"type", "type"}, + {"title", "title"}}}; + j["reference_epoch"] = "2000-01-01T00:00:00Z"; + j["uncertainty_reference_epoch"] = "2018-12-15T00:00:00Z"; + j["horizontal_offset_method"] = "addition"; + j["horizontal_offset_unit"] = "metre"; + j["vertical_offset_unit"] = "metre"; + j["horizontal_uncertainty_type"] = "circular 95% confidence limit"; + j["horizontal_uncertainty_unit"] = "metre"; + j["vertical_uncertainty_type"] = "95% confidence limit"; + j["vertical_uncertainty_unit"] = "metre"; + j["components"] = {{ + {"description", "description"}, + {"displacement_type", "horizontal"}, + {"uncertainty_type", "none"}, + {"horizontal_uncertainty", 0.01}, + {"vertical_uncertainty", 0.02}, + {"extent", + {{"type", "bbox"}, + {"parameters", + {{"bbox", {modelMinX, modelMinY, modelMaxX, modelMaxY}}}}}}, + {"spatial_model", + { + {"type", "GeoTIFF"}, + {"interpolation_method", "bilinear"}, + {"filename", "nzgd2000-ndm-grid02.tif"}, + {"md5_checksum", "49fce8ab267be2c8d00d43683060a032"}, + }}, + {"time_function", + { + {"type", "constant"}, {"parameters", json::object()}, + }}, + }}; + + j["components"].push_back(j["components"][0]); + j["components"][IDX_VELOCITY]["time_function"] = { + {"type", "velocity"}, + {"parameters", {{"reference_epoch", "2000-01-01T00:00:00Z"}}}, + }; + + j["components"].push_back(j["components"][0]); + j["components"][IDX_STEP]["time_function"] = { + {"type", "step"}, + {"parameters", {{"step_epoch", "2000-01-01T00:00:00Z"}}}, + }; + + j["components"].push_back(j["components"][0]); + j["components"][IDX_REVERSE_STEP]["time_function"] = { + {"type", "reverse_step"}, + {"parameters", {{"step_epoch", "2000-01-01T00:00:00Z"}}}, + }; + + j["components"].push_back(j["components"][0]); + j["components"][IDX_PIECEWISE]["time_function"] = { + {"type", "piecewise"}, + {"parameters", + {{"before_first", "zero"}, + {"after_last", "constant"}, + {"model", + {{{"epoch", "2016-01-01T00:00:00Z"}, {"scale_factor", 0.5}}, + {{"epoch", "2017-01-01T00:00:00Z"}, {"scale_factor", 1.0}}, + {{"epoch", "2017-01-01T00:00:00Z"}, {"scale_factor", 2.0}}, + {{"epoch", "2018-01-01T00:00:00Z"}, {"scale_factor", 1.0}}}}}}}; + + j["components"].push_back(j["components"][0]); + j["components"][IDX_EXPONENTIAL]["time_function"] = { + {"type", "exponential"}, + {"parameters", + { + {"reference_epoch", "2000-01-01T00:00:00Z"}, + {"end_epoch", "2001-01-01T00:00:00Z"}, + {"relaxation_constant", 2.0}, + {"before_scale_factor", 0.0}, + {"initial_scale_factor", 1.0}, + {"final_scale_factor", 3.0}, + }}, + }; + + return j; +} + +// --------------------------------------------------------------------------- + +TEST(defmodel, basic) { + EXPECT_THROW(MasterFile::parse("foo"), ParsingException); + EXPECT_THROW(MasterFile::parse("null"), ParsingException); + EXPECT_THROW(MasterFile::parse("{}"), ParsingException); + + const auto jMinValid(getMinValidContent()); + { + auto mf = MasterFile::parse(jMinValid.dump()); + EXPECT_EQ(mf->fileType(), "GeoTIFF"); + EXPECT_EQ(mf->formatVersion(), "1.0"); + EXPECT_EQ(mf->sourceCRS(), "EPSG:4959"); + EXPECT_EQ(mf->targetCRS(), "EPSG:7907"); + EXPECT_EQ(mf->definitionCRS(), "EPSG:4959"); + EXPECT_EQ(mf->extent().minx(), modelMinX); + EXPECT_EQ(mf->extent().miny(), modelMinY); + EXPECT_EQ(mf->extent().maxx(), modelMaxX); + EXPECT_EQ(mf->extent().maxy(), modelMaxY); + EXPECT_EQ(mf->timeExtent().first.toString(), "1900-01-01T00:00:00Z"); + EXPECT_EQ(mf->timeExtent().last.toString(), "2050-01-01T00:00:00Z"); + } + + // Check that removing one of each required key causes an exception + for (const auto &kv : jMinValid.items()) { + json jcopy(jMinValid); + jcopy.erase(kv.key()); + EXPECT_THROW(MasterFile::parse(jcopy.dump()), ParsingException); + } + + { + json jcopy(jMinValid); + jcopy["definition_crs"] = "EPSG:4326"; + EXPECT_THROW(MasterFile::parse(jcopy.dump()), ParsingException); + } + + { + json jcopy(jMinValid); + jcopy["file_type"] = 1; + EXPECT_THROW(MasterFile::parse(jcopy.dump()), ParsingException); + } + + { + json jcopy(jMinValid); + jcopy["extent"].erase("type"); + EXPECT_THROW(MasterFile::parse(jcopy.dump()), ParsingException); + } + + { + json jcopy(jMinValid); + jcopy["extent"].erase("parameters"); + EXPECT_THROW(MasterFile::parse(jcopy.dump()), ParsingException); + } + + { + json jcopy(jMinValid); + jcopy["extent"]["parameters"].clear(); + EXPECT_THROW(MasterFile::parse(jcopy.dump()), ParsingException); + } + + { + json jcopy(jMinValid); + jcopy["extent"]["parameters"].erase("bbox"); + EXPECT_THROW(MasterFile::parse(jcopy.dump()), ParsingException); + } + + { + json jcopy(jMinValid); + jcopy["extent"]["parameters"]["bbox"] = "foo"; + EXPECT_THROW(MasterFile::parse(jcopy.dump()), ParsingException); + } + + { + json jcopy(jMinValid); + jcopy["extent"]["parameters"]["bbox"] = {0, 1, 2}; + EXPECT_THROW(MasterFile::parse(jcopy.dump()), ParsingException); + } + + { + json jcopy(jMinValid); + jcopy["extent"]["parameters"]["bbox"] = {0, 1, 2, "foo"}; + EXPECT_THROW(MasterFile::parse(jcopy.dump()), ParsingException); + } + + { + json jcopy(jMinValid); + jcopy["time_extent"] = "foo"; + EXPECT_THROW(MasterFile::parse(jcopy.dump()), ParsingException); + } + + { + json jcopy(jMinValid); + jcopy["time_extent"].erase("first"); + EXPECT_THROW(MasterFile::parse(jcopy.dump()), ParsingException); + } + + { + json jcopy(jMinValid); + jcopy["time_extent"].erase("last"); + EXPECT_THROW(MasterFile::parse(jcopy.dump()), ParsingException); + } +} + +// --------------------------------------------------------------------------- + +TEST(defmodel, full) { + const auto jFullValid(getFullValidContent()); + auto mf = MasterFile::parse(jFullValid.dump()); + EXPECT_EQ(mf->name(), "name"); + EXPECT_EQ(mf->version(), "version"); + EXPECT_EQ(mf->publicationDate(), "2018-07-01T00:00:00Z"); + EXPECT_EQ(mf->license(), "license"); + EXPECT_EQ(mf->description(), "description"); + EXPECT_EQ(mf->authority().name, "authority_name"); + EXPECT_EQ(mf->authority().url, "authority_url"); + EXPECT_EQ(mf->authority().address, "authority_address"); + EXPECT_EQ(mf->authority().email, "authority_email"); + EXPECT_EQ(mf->links().size(), 1U); + EXPECT_EQ(mf->links()[0].href, "href"); + EXPECT_EQ(mf->links()[0].rel, "rel"); + EXPECT_EQ(mf->links()[0].type, "type"); + EXPECT_EQ(mf->links()[0].title, "title"); + EXPECT_EQ(mf->referenceEpoch(), "2000-01-01T00:00:00Z"); + EXPECT_EQ(mf->uncertaintyReferenceEpoch(), "2018-12-15T00:00:00Z"); + EXPECT_EQ(mf->horizontalOffsetUnit(), "metre"); + EXPECT_EQ(mf->verticalOffsetUnit(), "metre"); + EXPECT_EQ(mf->horizontalUncertaintyType(), "circular 95% confidence limit"); + EXPECT_EQ(mf->horizontalUncertaintyUnit(), "metre"); + EXPECT_EQ(mf->verticalUncertaintyType(), "95% confidence limit"); + EXPECT_EQ(mf->verticalUncertaintyUnit(), "metre"); + EXPECT_EQ(mf->horizontalOffsetMethod(), "addition"); + ASSERT_EQ(mf->components().size(), 6U); + { + const auto &comp = mf->components()[IDX_CONSTANT]; + EXPECT_EQ(comp.description(), "description"); + EXPECT_EQ(comp.displacementType(), "horizontal"); + EXPECT_EQ(comp.uncertaintyType(), "none"); + EXPECT_EQ(comp.horizontalUncertainty(), 0.01); + EXPECT_EQ(comp.verticalUncertainty(), 0.02); + EXPECT_EQ(comp.extent().minx(), modelMinX); + EXPECT_EQ(comp.extent().miny(), modelMinY); + EXPECT_EQ(comp.extent().maxx(), modelMaxX); + EXPECT_EQ(comp.extent().maxy(), modelMaxY); + EXPECT_EQ(comp.spatialModel().type, "GeoTIFF"); + EXPECT_EQ(comp.spatialModel().interpolationMethod, "bilinear"); + EXPECT_EQ(comp.spatialModel().filename, "nzgd2000-ndm-grid02.tif"); + EXPECT_EQ(comp.spatialModel().md5Checksum, + "49fce8ab267be2c8d00d43683060a032"); + ASSERT_NE(comp.timeFunction(), nullptr); + ASSERT_EQ(comp.timeFunction()->type, "constant"); + } + { + const auto &comp = mf->components()[IDX_VELOCITY]; + ASSERT_NE(comp.timeFunction(), nullptr); + ASSERT_EQ(comp.timeFunction()->type, "velocity"); + const auto velocity = + static_cast<const Component::VelocityTimeFunction *>( + comp.timeFunction()); + EXPECT_EQ(velocity->referenceEpoch.toString(), "2000-01-01T00:00:00Z"); + } + { + const auto &comp = mf->components()[IDX_STEP]; + ASSERT_NE(comp.timeFunction(), nullptr); + ASSERT_EQ(comp.timeFunction()->type, "step"); + const auto step = static_cast<const Component::StepTimeFunction *>( + comp.timeFunction()); + EXPECT_EQ(step->stepEpoch.toString(), "2000-01-01T00:00:00Z"); + } + { + const auto &comp = mf->components()[IDX_REVERSE_STEP]; + ASSERT_NE(comp.timeFunction(), nullptr); + ASSERT_EQ(comp.timeFunction()->type, "reverse_step"); + const auto step = + static_cast<const Component::ReverseStepTimeFunction *>( + comp.timeFunction()); + EXPECT_EQ(step->stepEpoch.toString(), "2000-01-01T00:00:00Z"); + } + { + const auto &comp = mf->components()[IDX_PIECEWISE]; + ASSERT_NE(comp.timeFunction(), nullptr); + ASSERT_EQ(comp.timeFunction()->type, "piecewise"); + const auto piecewise = + static_cast<const Component::PiecewiseTimeFunction *>( + comp.timeFunction()); + EXPECT_EQ(piecewise->beforeFirst, "zero"); + EXPECT_EQ(piecewise->afterLast, "constant"); + EXPECT_EQ(piecewise->model.size(), 4U); + EXPECT_EQ(piecewise->model[0].epoch.toString(), "2016-01-01T00:00:00Z"); + EXPECT_EQ(piecewise->model[0].scaleFactor, 0.5); + } + { + const auto &comp = mf->components()[IDX_EXPONENTIAL]; + ASSERT_NE(comp.timeFunction(), nullptr); + ASSERT_EQ(comp.timeFunction()->type, "exponential"); + const auto exponential = + static_cast<const Component::ExponentialTimeFunction *>( + comp.timeFunction()); + EXPECT_EQ(exponential->referenceEpoch.toString(), + "2000-01-01T00:00:00Z"); + EXPECT_EQ(exponential->endEpoch.toString(), "2001-01-01T00:00:00Z"); + EXPECT_EQ(exponential->relaxationConstant, 2.0); + EXPECT_EQ(exponential->beforeScaleFactor, 0.0); + EXPECT_EQ(exponential->initialScaleFactor, 1.0); + EXPECT_EQ(exponential->finalScaleFactor, 3.0); + } +} + +// --------------------------------------------------------------------------- + +TEST(defmodel, error_cases) { + const auto jFullValid(getFullValidContent()); + { + json jcopy(jFullValid); + jcopy["horizontal_offset_method"] = "unsupported"; + EXPECT_THROW(MasterFile::parse(jcopy.dump()), ParsingException); + } + + { + json jcopy(jFullValid); + jcopy["horizontal_offset_unit"] = "unsupported"; + EXPECT_THROW(MasterFile::parse(jcopy.dump()), ParsingException); + } + + { + json jcopy(jFullValid); + jcopy["vertical_offset_unit"] = "unsupported"; + EXPECT_THROW(MasterFile::parse(jcopy.dump()), ParsingException); + } + + { + json jcopy(jFullValid); + jcopy["components"][IDX_CONSTANT]["spatial_model"] + ["interpolation_method"] = "unsupported"; + EXPECT_THROW(MasterFile::parse(jcopy.dump()), ParsingException); + } + + { + json jcopy(jFullValid); + jcopy["components"][IDX_CONSTANT]["displacement_type"] = "unsupported"; + EXPECT_THROW(MasterFile::parse(jcopy.dump()), ParsingException); + } + + { + json jcopy(jFullValid); + jcopy["components"][IDX_PIECEWISE]["time_function"]["parameters"] + ["model"] = "foo"; + EXPECT_THROW(MasterFile::parse(jcopy.dump()), ParsingException); + } + + { + json jcopy(jFullValid); + jcopy["components"][IDX_PIECEWISE]["time_function"]["parameters"] + ["before_first"] = "illegal"; + EXPECT_THROW(MasterFile::parse(jcopy.dump()), ParsingException); + } + + { + json jcopy(jFullValid); + jcopy["components"][IDX_PIECEWISE]["time_function"]["parameters"] + ["after_last"] = "illegal"; + EXPECT_THROW(MasterFile::parse(jcopy.dump()), ParsingException); + } + + { + json jcopy(jFullValid); + jcopy["components"][0]["time_function"]["type"] = "unknown"; + EXPECT_THROW(MasterFile::parse(jcopy.dump()), ParsingException); + } + + // Unsupported combination + { + json jcopy(jFullValid); + jcopy["horizontal_offset_method"] = "geocentric"; + EXPECT_NO_THROW(MasterFile::parse(jcopy.dump())); + } + { + json jcopy(jFullValid); + jcopy["horizontal_offset_unit"] = "degree"; + EXPECT_NO_THROW(MasterFile::parse(jcopy.dump())); + } + { + json jcopy(jFullValid); + jcopy["horizontal_offset_method"] = "geocentric"; + jcopy["horizontal_offset_unit"] = "degree"; + EXPECT_THROW(MasterFile::parse(jcopy.dump()), ParsingException); + } + + // Unsupported combination + { + json jcopy(jFullValid); + jcopy["components"][IDX_VELOCITY]["spatial_model"] + ["interpolation_method"] = "geocentric_bilinear"; + EXPECT_NO_THROW(MasterFile::parse(jcopy.dump())); + } + { + json jcopy(jFullValid); + jcopy["horizontal_offset_unit"] = "degree"; + EXPECT_NO_THROW(MasterFile::parse(jcopy.dump())); + } + { + json jcopy(jFullValid); + jcopy["components"][IDX_VELOCITY]["spatial_model"] + ["interpolation_method"] = "geocentric_bilinear"; + jcopy["horizontal_offset_unit"] = "degree"; + EXPECT_THROW(MasterFile::parse(jcopy.dump()), ParsingException); + } +} + +// --------------------------------------------------------------------------- + +TEST(defmodel, ISO8601ToDecimalYear) { + EXPECT_EQ(ISO8601ToDecimalYear("2000-01-01T00:00:00Z"), 2000.0); + EXPECT_EQ(ISO8601ToDecimalYear("2000-02-29T12:00:00Z"), + 2000.0 + ((31 + 28) * 86400. + 12 * 3600) / (366 * 86400)); + EXPECT_EQ(ISO8601ToDecimalYear("2000-12-31T23:59:59Z"), + 2000.0 + (366 * 86400 - 1.) / (366 * 86400)); + EXPECT_EQ(ISO8601ToDecimalYear("2001-01-01T00:00:00Z"), 2001.0); + EXPECT_EQ(ISO8601ToDecimalYear("2001-12-31T23:59:59Z"), + 2001.0 + (365 * 86400 - 1.) / (365 * 86400)); + EXPECT_THROW(ISO8601ToDecimalYear(""), ParsingException); + EXPECT_THROW(ISO8601ToDecimalYear("0000-01-01T00:00:00Z"), + ParsingException); + EXPECT_THROW(ISO8601ToDecimalYear("2001-02-29T00:00:00Z"), + ParsingException); + EXPECT_THROW(ISO8601ToDecimalYear("2000-13-01T00:00:00Z"), + ParsingException); + EXPECT_THROW(ISO8601ToDecimalYear("2000-01-32T00:00:00Z"), + ParsingException); + EXPECT_THROW(ISO8601ToDecimalYear("2000-01-01T24:00:00Z"), + ParsingException); + EXPECT_THROW(ISO8601ToDecimalYear("2000-01-01T00:60:00Z"), + ParsingException); + EXPECT_THROW(ISO8601ToDecimalYear("2000-01-01T00:00:61Z"), + ParsingException); +} + +// --------------------------------------------------------------------------- + +TEST(defmodel, evaluate_constant) { + const auto jFullValid(getFullValidContent()); + const auto mf = MasterFile::parse(jFullValid.dump()); + const auto &comp = mf->components()[IDX_CONSTANT]; + EXPECT_EQ(comp.timeFunction()->evaluateAt(1999.0), 1.0); + EXPECT_EQ(comp.timeFunction()->evaluateAt(2000.0), 1.0); + EXPECT_EQ(comp.timeFunction()->evaluateAt(2001.0), 1.0); +} + +// --------------------------------------------------------------------------- + +TEST(defmodel, evaluate_velocity) { + const auto jFullValid(getFullValidContent()); + const auto mf = MasterFile::parse(jFullValid.dump()); + const auto &comp = mf->components()[IDX_VELOCITY]; + EXPECT_EQ(comp.timeFunction()->evaluateAt(1999.0), -1.0); + EXPECT_EQ(comp.timeFunction()->evaluateAt(2000.0), 0.0); + EXPECT_EQ(comp.timeFunction()->evaluateAt(2001.0), 1.0); +} + +// --------------------------------------------------------------------------- + +TEST(defmodel, evaluate_step) { + const auto jFullValid(getFullValidContent()); + const auto mf = MasterFile::parse(jFullValid.dump()); + const auto &comp = mf->components()[IDX_STEP]; + EXPECT_EQ(comp.timeFunction()->evaluateAt(1999.99), 0.0); + EXPECT_EQ(comp.timeFunction()->evaluateAt(2000.00), 1.0); + EXPECT_EQ(comp.timeFunction()->evaluateAt(2000.01), 1.0); +} + +// --------------------------------------------------------------------------- + +TEST(defmodel, evaluate_reverse_step) { + const auto jFullValid(getFullValidContent()); + const auto mf = MasterFile::parse(jFullValid.dump()); + const auto &comp = mf->components()[IDX_REVERSE_STEP]; + EXPECT_EQ(comp.timeFunction()->evaluateAt(1999.99), -1.0); + EXPECT_EQ(comp.timeFunction()->evaluateAt(2000.00), 0.0); + EXPECT_EQ(comp.timeFunction()->evaluateAt(2000.01), 0.0); +} + +// --------------------------------------------------------------------------- + +TEST(defmodel, evaluate_piecewise) { + const auto jFullValid(getFullValidContent()); + { + const auto mf = MasterFile::parse(jFullValid.dump()); + const auto &comp = mf->components()[IDX_PIECEWISE]; + EXPECT_EQ(comp.timeFunction()->evaluateAt(2015.99), 0.0); + EXPECT_EQ(comp.timeFunction()->evaluateAt(2016.00), 0.5); + EXPECT_EQ(comp.timeFunction()->evaluateAt(2016.5), 0.75); + EXPECT_NEAR(comp.timeFunction()->evaluateAt(2017 - 1e-9), 1.0, 1e-9); + EXPECT_EQ(comp.timeFunction()->evaluateAt(2017.0), 2.0); + EXPECT_EQ(comp.timeFunction()->evaluateAt(2017.5), 1.5); + EXPECT_EQ(comp.timeFunction()->evaluateAt(2018.0), 1.0); + EXPECT_EQ(comp.timeFunction()->evaluateAt(2019.0), 1.0); + } + + { + json jcopy(jFullValid); + jcopy["components"][IDX_PIECEWISE]["time_function"]["parameters"] + ["before_first"] = "zero"; + const auto mf = MasterFile::parse(jcopy.dump()); + const auto &comp = mf->components()[IDX_PIECEWISE]; + EXPECT_EQ(comp.timeFunction()->evaluateAt(2015.5), 0.0); + } + + { + json jcopy(jFullValid); + jcopy["components"][IDX_PIECEWISE]["time_function"]["parameters"] + ["before_first"] = "constant"; + const auto mf = MasterFile::parse(jcopy.dump()); + const auto &comp = mf->components()[IDX_PIECEWISE]; + EXPECT_EQ(comp.timeFunction()->evaluateAt(2015.5), 0.5); + } + + { + json jcopy(jFullValid); + jcopy["components"][IDX_PIECEWISE]["time_function"]["parameters"] + ["before_first"] = "linear"; + const auto mf = MasterFile::parse(jcopy.dump()); + const auto &comp = mf->components()[IDX_PIECEWISE]; + EXPECT_EQ(comp.timeFunction()->evaluateAt(2015.5), 0.25); + } + + { + json jcopy(jFullValid); + jcopy["components"][IDX_PIECEWISE]["time_function"]["parameters"] + ["after_last"] = "zero"; + const auto mf = MasterFile::parse(jcopy.dump()); + const auto &comp = mf->components()[IDX_PIECEWISE]; + EXPECT_EQ(comp.timeFunction()->evaluateAt(2018.5), 0.0); + } + + { + json jcopy(jFullValid); + jcopy["components"][IDX_PIECEWISE]["time_function"]["parameters"] + ["after_last"] = "constant"; + const auto mf = MasterFile::parse(jcopy.dump()); + const auto &comp = mf->components()[IDX_PIECEWISE]; + EXPECT_EQ(comp.timeFunction()->evaluateAt(2018.5), 1.0); + } + + { + json jcopy(jFullValid); + jcopy["components"][IDX_PIECEWISE]["time_function"]["parameters"] + ["after_last"] = "linear"; + const auto mf = MasterFile::parse(jcopy.dump()); + const auto &comp = mf->components()[IDX_PIECEWISE]; + EXPECT_EQ(comp.timeFunction()->evaluateAt(2018.5), 0.5); + } + + // No epoch + { + json jcopy(jFullValid); + jcopy["components"][IDX_PIECEWISE]["time_function"]["parameters"] + ["model"] + .clear(); + const auto mf = MasterFile::parse(jcopy.dump()); + const auto &comp = mf->components()[IDX_PIECEWISE]; + EXPECT_EQ(comp.timeFunction()->evaluateAt(2015.5), 0.0); + } + + // Just one epoch + { + json jcopy(jFullValid); + jcopy["components"][IDX_PIECEWISE]["time_function"]["parameters"] + ["model"] = { + {{"epoch", "2016-01-01T00:00:00Z"}, {"scale_factor", 0.5}}}; + jcopy["components"][IDX_PIECEWISE]["time_function"]["parameters"] + ["before_first"] = "linear"; + jcopy["components"][IDX_PIECEWISE]["time_function"]["parameters"] + ["after_last"] = "linear"; + const auto mf = MasterFile::parse(jcopy.dump()); + const auto &comp = mf->components()[IDX_PIECEWISE]; + EXPECT_EQ(comp.timeFunction()->evaluateAt(2015.5), 0.5); + EXPECT_EQ(comp.timeFunction()->evaluateAt(2016.5), 0.5); + } + + // Two identical epochs + { + json jcopy(jFullValid); + jcopy["components"][IDX_PIECEWISE]["time_function"]["parameters"] + ["model"] = { + {{"epoch", "2016-01-01T00:00:00Z"}, {"scale_factor", 0.5}}, + {{"epoch", "2016-01-01T00:00:00Z"}, {"scale_factor", 1.0}}}; + jcopy["components"][IDX_PIECEWISE]["time_function"]["parameters"] + ["before_first"] = "linear"; + jcopy["components"][IDX_PIECEWISE]["time_function"]["parameters"] + ["after_last"] = "linear"; + const auto mf = MasterFile::parse(jcopy.dump()); + const auto &comp = mf->components()[IDX_PIECEWISE]; + EXPECT_EQ(comp.timeFunction()->evaluateAt(2015.5), 0.5); + EXPECT_EQ(comp.timeFunction()->evaluateAt(2016.5), 1.0); + } +} + +// --------------------------------------------------------------------------- + +TEST(defmodel, evaluate_exponential) { + const auto jFullValid(getFullValidContent()); + const auto mf = MasterFile::parse(jFullValid.dump()); + const auto &comp = mf->components()[IDX_EXPONENTIAL]; + EXPECT_EQ(comp.timeFunction()->evaluateAt(1999.99), 0.0); + EXPECT_EQ(comp.timeFunction()->evaluateAt(2000.00), 1.0); + EXPECT_EQ(comp.timeFunction()->evaluateAt(2000.50), + 1.0 + (3.0 - 1.0) * (1.0 - std::exp(-(2000.50 - 2000.00) / 2.0))); + EXPECT_EQ(comp.timeFunction()->evaluateAt(2001.00), + 1.0 + (3.0 - 1.0) * (1.0 - std::exp(-(2001.00 - 2000.00) / 2.0))); + EXPECT_EQ(comp.timeFunction()->evaluateAt(2002.00), + 1.0 + (3.0 - 1.0) * (1.0 - std::exp(-(2001.00 - 2000.00) / 2.0))); +} + +// --------------------------------------------------------------------------- + +inline double RadToDeg(double d) { return d / DEG_TO_RAD_CONSTANT; } + +// --------------------------------------------------------------------------- + +TEST(defmodel, evaluator_horizontal_unit_degree) { + json j(getMinValidContent()); + j["horizontal_offset_method"] = "addition"; + j["horizontal_offset_unit"] = "degree"; + constexpr double tFactor = 0.5; + constexpr double gridMinX = 160; + constexpr double gridMinY = -50; + constexpr double gridMaxX = 190; + constexpr double gridMaxY = -30; + j["components"] = { + {{"displacement_type", "horizontal"}, + {"uncertainty_type", "none"}, + {"extent", + {{"type", "bbox"}, + {"parameters", + {{"bbox", {gridMinX, gridMinY, gridMaxX, gridMaxY}}}}}}, + {"spatial_model", + { + {"type", "GeoTIFF"}, + {"interpolation_method", "bilinear"}, + {"filename", "bla.tif"}, + }}, + {"time_function", + {{"type", "piecewise"}, + {"parameters", + {{"before_first", "zero"}, + {"after_last", "zero"}, + {"model", + {{{"epoch", "2010-01-01T00:00:00Z"}, {"scale_factor", tFactor}}, + {{"epoch", "2020-01-01T00:00:00Z"}, + {"scale_factor", tFactor}}}}}}}}}}; + + constexpr int iQueriedX = 1; + constexpr int iQueriedY = 3; + constexpr double lonOffsetQueriedX = 0.01; + constexpr double lonOffsetQueriedXp1 = 0.02; + constexpr double latOffsetQueriedY = 0.03; + constexpr double latOffsetQueriedYp1 = 0.04; + constexpr double zOffsetQueriedXY = 10.; + constexpr double zOffsetQueriedXp1Y = 11.; + constexpr double zOffsetQueriedXYp1 = 11.; + constexpr double zOffsetQueriedXp1Yp1 = 12.; + constexpr double gridResX = 2; + constexpr double gridResY = 0.5; + + struct Grid : public GridPrototype { + bool getLonLatOffset(int ix, int iy, double &lonOffsetRadian, + double &latOffsetRadian) const { + if (ix == iQueriedX) { + lonOffsetRadian = DegToRad(lonOffsetQueriedX); + } else if (ix == iQueriedX + 1) { + lonOffsetRadian = DegToRad(lonOffsetQueriedXp1); + } else { + return false; + } + if (iy == iQueriedY) { + latOffsetRadian = DegToRad(latOffsetQueriedY); + } else if (iy == iQueriedY + 1) { + latOffsetRadian = DegToRad(latOffsetQueriedYp1); + } else { + return false; + } + return true; + } + + bool getZOffset(int ix, int iy, double &zOffset) const { + if (ix == iQueriedX && iy == iQueriedY) { + zOffset = zOffsetQueriedXY; + } else if (ix == iQueriedX + 1 && iy == iQueriedY) { + zOffset = zOffsetQueriedXp1Y; + } else if (ix == iQueriedX && iy == iQueriedY + 1) { + zOffset = zOffsetQueriedXYp1; + } else if (ix == iQueriedX + 1 && iy == iQueriedY + 1) { + zOffset = zOffsetQueriedXp1Yp1; + } else { + return false; + } + return true; + } + + bool getLonLatZOffset(int ix, int iy, double &lonOffsetRadian, + double &latOffsetRadian, double &zOffset) const { + return getLonLatOffset(ix, iy, lonOffsetRadian, latOffsetRadian) && + getZOffset(ix, iy, zOffset); + } + +#ifdef DEBUG_DEFMODEL + std::string name() const { return std::string(); } +#endif + }; + + struct GridSet : public GridSetPrototype<Grid> { + + Grid grid{}; + + GridSet() { + grid.minx = DegToRad(gridMinX); + grid.miny = DegToRad(gridMinY); + grid.resx = DegToRad(gridResX); + grid.resy = DegToRad(gridResY); + grid.width = + 1 + static_cast<int>(0.5 + (gridMaxX - gridMinX) / gridResX); + grid.height = + 1 + static_cast<int>(0.5 + (gridMaxY - gridMinY) / gridResY); + } + + const Grid *gridAt(double /*x */, double /* y */) { return &grid; } + }; + + struct EvaluatorIface : public EvaluatorIfacePrototype<Grid, GridSet> { + std::unique_ptr<GridSet> open(const std::string &filename) { + if (filename != "bla.tif") + return nullptr; + return std::unique_ptr<GridSet>(new GridSet()); + } + + bool isGeographicCRS(const std::string & /* crsDef */) { return true; } + +#ifdef DEBUG_DEFMODEL + void log(const std::string & /* msg */) {} +#endif + }; + + EvaluatorIface iface; + + Evaluator<Grid, GridSet, EvaluatorIface> eval(MasterFile::parse(j.dump()), + iface, 1, 1); + double newLon; + double newLat; + double newZ; + constexpr double tValid = 2018; + constexpr double EPS = 1e-9; + constexpr double zVal = 100; + + // Query on exact grid intersection + { + const double lon = gridMinX + iQueriedX * gridResX; + const double lat = gridMinY + iQueriedY * gridResY; + EXPECT_TRUE(eval.forward(iface, DegToRad(lon), DegToRad(lat), zVal, + tValid, newLon, newLat, newZ)); + EXPECT_NEAR(RadToDeg(newLon), lon + tFactor * lonOffsetQueriedX, EPS); + EXPECT_NEAR(RadToDeg(newLat), lat + tFactor * latOffsetQueriedY, EPS); + EXPECT_EQ(newZ, zVal); + } + + // Query between grid points + { + constexpr double alphaX = 0.25; + constexpr double alphaY = 0.125; + const double lon = gridMinX + iQueriedX * gridResX + alphaX * gridResX; + const double lat = gridMinY + iQueriedY * gridResY + alphaY * gridResY; + EXPECT_TRUE(eval.forward(iface, DegToRad(lon), DegToRad(lat), zVal, + tValid, newLon, newLat, newZ)); + EXPECT_NEAR( + RadToDeg(newLon), + lon + + tFactor * (lonOffsetQueriedX + + alphaX * (lonOffsetQueriedXp1 - lonOffsetQueriedX)), + EPS); + EXPECT_NEAR( + RadToDeg(newLat), + lat + + tFactor * (latOffsetQueriedY + + alphaY * (latOffsetQueriedYp1 - latOffsetQueriedY)), + EPS); + EXPECT_EQ(newZ, zVal); + } + + // Longitude < model min + { + const double lon = modelMinX - 1e-1; + const double lat = gridMinY + iQueriedY * gridResY; + EXPECT_FALSE(eval.forward(iface, DegToRad(lon), DegToRad(lat), zVal, + tValid, newLon, newLat, newZ)); + } + + // Longitude > model max + { + const double lon = modelMaxX + 1e-1; + const double lat = gridMinY + iQueriedY * gridResY; + EXPECT_FALSE(eval.forward(iface, DegToRad(lon), DegToRad(lat), zVal, + tValid, newLon, newLat, newZ)); + } + + // Latitude < model min + { + const double lon = gridMinX + iQueriedX * gridResX; + const double lat = modelMinY - 1e-1; + EXPECT_FALSE(eval.forward(iface, DegToRad(lon), DegToRad(lat), zVal, + tValid, newLon, newLat, newZ)); + } + + // Latitude > model max + { + const double lon = gridMinX + iQueriedX * gridResX; + const double lat = modelMaxY + 1e-1; + EXPECT_FALSE(eval.forward(iface, DegToRad(lon), DegToRad(lat), zVal, + tValid, newLon, newLat, newZ)); + } + + // Before timeExtent.first + { + const double lon = gridMinX + iQueriedX * gridResX; + const double lat = gridMinY + iQueriedY * gridResY; + EXPECT_FALSE(eval.forward(iface, DegToRad(lon), DegToRad(lat), zVal, + 1000, newLon, newLat, newZ)); + } + + // After timeExtent.last + { + const double lon = gridMinX + iQueriedX * gridResX; + const double lat = gridMinY + iQueriedY * gridResY; + EXPECT_FALSE(eval.forward(iface, DegToRad(lon), DegToRad(lat), zVal, + 3000, newLon, newLat, newZ)); + } + + // Longitude < grid min + { + const double lon = gridMinX - 1e-1; + const double lat = gridMinY + iQueriedY * gridResY; + EXPECT_TRUE(eval.forward(iface, DegToRad(lon), DegToRad(lat), zVal, + tValid, newLon, newLat, newZ)); + EXPECT_NEAR(RadToDeg(newLon), lon, EPS); + EXPECT_NEAR(RadToDeg(newLat), lat, EPS); + EXPECT_EQ(newZ, zVal); + } + + // Longitude > grid max + { + const double lon = gridMaxX + 1e-1; + const double lat = gridMinY + iQueriedY * gridResY; + EXPECT_TRUE(eval.forward(iface, DegToRad(lon), DegToRad(lat), zVal, + tValid, newLon, newLat, newZ)); + EXPECT_NEAR(RadToDeg(newLon), lon, EPS); + EXPECT_NEAR(RadToDeg(newLat), lat, EPS); + EXPECT_EQ(newZ, zVal); + } + + // Latitude < grid min + { + const double lon = gridMinX + iQueriedX * gridResX; + const double lat = gridMinY - 1e-1; + EXPECT_TRUE(eval.forward(iface, DegToRad(lon), DegToRad(lat), zVal, + tValid, newLon, newLat, newZ)); + EXPECT_NEAR(RadToDeg(newLon), lon, EPS); + EXPECT_NEAR(RadToDeg(newLat), lat, EPS); + EXPECT_EQ(newZ, zVal); + } + + // Latitude > grid max + { + const double lon = gridMinX + iQueriedX * gridResX; + const double lat = gridMaxY + 1e-1; + EXPECT_TRUE(eval.forward(iface, DegToRad(lon), DegToRad(lat), zVal, + tValid, newLon, newLat, newZ)); + EXPECT_NEAR(RadToDeg(newLon), lon, EPS); + EXPECT_NEAR(RadToDeg(newLat), lat, EPS); + EXPECT_EQ(newZ, zVal); + } + + // Time function values to zero + { + const double lon = gridMinX + iQueriedX * gridResX; + const double lat = gridMinY + iQueriedY * gridResY; + EXPECT_TRUE(eval.forward(iface, DegToRad(lon), DegToRad(lat), zVal, + 2000, newLon, newLat, newZ)); + EXPECT_NEAR(RadToDeg(newLon), lon, EPS); + EXPECT_NEAR(RadToDeg(newLat), lat, EPS); + EXPECT_EQ(newZ, zVal); + } + + // Test vertical + j["components"][0]["displacement_type"] = "vertical"; + j["vertical_offset_unit"] = "metre"; + Evaluator<Grid, GridSet, EvaluatorIface> evalVertical( + MasterFile::parse(j.dump()), iface, 1, 1); + { + constexpr double alphaX = 0.25; + constexpr double alphaY = 0.125; + const double lon = gridMinX + iQueriedX * gridResX + alphaX * gridResX; + const double lat = gridMinY + iQueriedY * gridResY + alphaY * gridResY; + EXPECT_TRUE(evalVertical.forward(iface, DegToRad(lon), DegToRad(lat), + zVal, tValid, newLon, newLat, newZ)); + EXPECT_NEAR(RadToDeg(newLon), lon, EPS); + EXPECT_NEAR(RadToDeg(newLat), lat, EPS); + + const double zBottom = + zOffsetQueriedXY + alphaX * (zOffsetQueriedXp1Y - zOffsetQueriedXY); + const double zTop = + zOffsetQueriedXYp1 + + alphaX * (zOffsetQueriedXp1Yp1 - zOffsetQueriedXYp1); + EXPECT_NEAR( + newZ, zVal + tFactor * (zBottom + alphaY * (zTop - zBottom)), EPS); + } + + // Test 3d + j["components"][0]["displacement_type"] = "3d"; + j["vertical_offset_unit"] = "metre"; + Evaluator<Grid, GridSet, EvaluatorIface> eval3d(MasterFile::parse(j.dump()), + iface, 1, 1); + { + constexpr double alphaX = 0.25; + constexpr double alphaY = 0.125; + const double lon = gridMinX + iQueriedX * gridResX + alphaX * gridResX; + const double lat = gridMinY + iQueriedY * gridResY + alphaY * gridResY; + EXPECT_TRUE(eval3d.forward(iface, DegToRad(lon), DegToRad(lat), zVal, + tValid, newLon, newLat, newZ)); + EXPECT_NEAR( + RadToDeg(newLon), + lon + + tFactor * (lonOffsetQueriedX + + alphaX * (lonOffsetQueriedXp1 - lonOffsetQueriedX)), + EPS); + EXPECT_NEAR( + RadToDeg(newLat), + lat + + tFactor * (latOffsetQueriedY + + alphaY * (latOffsetQueriedYp1 - latOffsetQueriedY)), + EPS); + + const double zBottom = + zOffsetQueriedXY + alphaX * (zOffsetQueriedXp1Y - zOffsetQueriedXY); + const double zTop = + zOffsetQueriedXYp1 + + alphaX * (zOffsetQueriedXp1Yp1 - zOffsetQueriedXYp1); + EXPECT_NEAR( + newZ, zVal + tFactor * (zBottom + alphaY * (zTop - zBottom)), EPS); + } +} + +// --------------------------------------------------------------------------- + +inline void DeltaLongLatToEastingNorthing(double phi, double dlam, double dphi, + double a, double b, double &de, + double &dn) { + const double sinphi = sin(phi); + const double cosphi = cos(phi); + const double a2 = a * a; + const double b2 = b * b; + const double X = a2 * (cosphi * cosphi) + b2 * (sinphi * sinphi); + const double sqrtX = sqrt(X); + de = dlam * (a2 * cosphi) / sqrtX; + dn = dphi * a2 * b2 / (sqrtX * X); +} + +// --------------------------------------------------------------------------- + +TEST(defmodel, evaluator_horizontal_unit_metre) { + + json j(getMinValidContent()); + j["horizontal_offset_method"] = "addition"; + j["horizontal_offset_unit"] = "metre"; + j["vertical_offset_unit"] = "metre"; + constexpr double tFactor = 0.5; + constexpr double gridMinX = 165.8; + constexpr double gridMinY = -37.5; + constexpr double gridMaxX = 166.2; + constexpr double gridMaxY = -37.2; + constexpr double gridResX = gridMaxX - gridMinX; + constexpr double gridResY = gridMaxY - gridMinY; + constexpr int extraPointX = 1; + constexpr int extraPointY = 1; + + j["components"] = { + {{"displacement_type", "horizontal"}, + {"uncertainty_type", "none"}, + {"extent", + {{"type", "bbox"}, + {"parameters", + {{"bbox", + {gridMinX - extraPointX * gridResX, + gridMinY - extraPointY * gridResY, gridMaxX, gridMaxY}}}}}}, + {"spatial_model", + { + {"type", "GeoTIFF"}, + {"interpolation_method", "XXXXXXX"}, + {"filename", "bla.tif"}, + }}, + {"time_function", + {{"type", "piecewise"}, + {"parameters", + {{"before_first", "zero"}, + {"after_last", "zero"}, + {"model", + {{{"epoch", "2010-01-01T00:00:00Z"}, {"scale_factor", tFactor}}, + {{"epoch", "2020-01-01T00:00:00Z"}, + {"scale_factor", tFactor}}}}}}}}}}; + + struct Grid : public GridPrototype { + bool getEastingNorthingOffset(int ix, int iy, double &eastingOffset, + double &northingOffset) const { + ix -= extraPointX; + iy -= extraPointY; + if (ix == -1) + ix = 0; + if (iy == -1) + iy = 0; + if (ix == 0 && iy == 0) { + eastingOffset = 0.4f; + northingOffset = -0.2f; + } else if (ix == 1 && iy == 0) { + eastingOffset = 0.5f; + northingOffset = -0.25f; + } else if (ix == 0 && iy == 1) { + eastingOffset = 0.8f; + northingOffset = -0.4f; + } else if (ix == 1 && iy == 1) { + eastingOffset = 1.f; + northingOffset = -0.3f; + } else { + return false; + } + return true; + } + + bool getZOffset(int ix, int iy, double &zOffset) const { + ix -= extraPointX; + iy -= extraPointY; + if (ix == -1) + ix = 0; + if (iy == -1) + iy = 0; + if (ix == 0 && iy == 0) { + zOffset = 0.84f; + } else if (ix == 1 && iy == 0) { + zOffset = 0.75f; + } else if (ix == 0 && iy == 1) { + zOffset = 0.36f; + } else if (ix == 1 && iy == 1) { + zOffset = 0.f; + } else { + return false; + } + return true; + } + + bool getEastingNorthingZOffset(int ix, int iy, double &eastingOffset, + double &northingOffset, + double &zOffset) const { + return getEastingNorthingOffset(ix, iy, eastingOffset, + northingOffset) && + getZOffset(ix, iy, zOffset); + } + +#ifdef DEBUG_DEFMODEL + std::string name() const { return std::string(); } +#endif + }; + + struct GridSet : public GridSetPrototype<Grid> { + + Grid grid{}; + + GridSet() { + grid.minx = DegToRad(gridMinX - extraPointX * gridResX); + grid.miny = DegToRad(gridMinY - extraPointY * gridResY); + grid.resx = DegToRad(gridResX); + grid.resy = DegToRad(gridResY); + grid.width = 2 + extraPointX; + grid.height = 2 + extraPointY; + } + + const Grid *gridAt(double /*x */, double /* y */) { return &grid; } + }; + + struct EvaluatorIface : public EvaluatorIfacePrototype<Grid, GridSet> { + std::unique_ptr<GridSet> open(const std::string &filename) { + if (filename != "bla.tif") + return nullptr; + return std::unique_ptr<GridSet>(new GridSet()); + } + + bool isGeographicCRS(const std::string & /* crsDef */) { return true; } + +#ifdef DEBUG_DEFMODEL + void log(const std::string & /* msg */) {} +#endif + + void geographicToGeocentric(double lam, double phi, double height, + double a, double /*b*/, double es, + double &X, double &Y, double &Z) { + PJ_CONTEXT *ctx = proj_context_create(); + PJ *cart = proj_create( + ctx, + ("+proj=cart +a=" + osgeo::proj::internal::toString(a, 18) + + " +es=" + osgeo::proj::internal::toString(es, 18)) + .c_str()); + PJ_LPZ lpz; + lpz.lam = lam; + lpz.phi = phi; + lpz.z = height; + PJ_XYZ xyz = cart->fwd3d(lpz, cart); + X = xyz.x; + Y = xyz.y; + Z = xyz.z; + proj_destroy(cart); + proj_context_destroy(ctx); + } + + void geocentricToGeographic(double X, double Y, double Z, double a, + double /*b*/, double es, double &lam, + double &phi, double &height) { + PJ_CONTEXT *ctx = proj_context_create(); + PJ *cart = proj_create( + ctx, + ("+proj=cart +a=" + osgeo::proj::internal::toString(a, 18) + + " +es=" + osgeo::proj::internal::toString(es, 18)) + .c_str()); + PJ_XYZ xyz; + xyz.x = X; + xyz.y = Y; + xyz.z = Z; + PJ_LPZ lpz = cart->inv3d(xyz, cart); + lam = lpz.lam; + phi = lpz.phi; + height = lpz.z; + proj_destroy(cart); + proj_context_destroy(ctx); + } + }; + EvaluatorIface iface; + + constexpr double a = 6378137; + constexpr double b = 6356752.314140; + constexpr double tValid = 2018; + constexpr double zVal = 100; + + const struct { + double lon; + double lat; + double expected_de; + double expected_dn; + double expected_dz; + const char *displacement_type; + const char *interpolation_method; + } testPoints[] = { + {gridMinX - extraPointX * gridResX - 1e-11, + gridMinY - extraPointY * gridResY - 1e-11, 0.4, -0.2, 0, "horizontal", + "bilinear"}, + {gridMinX, gridMinY, 0.4, -0.2, 0, "horizontal", "bilinear"}, + {gridMaxX, gridMinY, 0.5, -0.25, 0, "horizontal", "bilinear"}, + {gridMinX, gridMaxY, 0.8, -0.4, 0, "horizontal", "bilinear"}, + {gridMaxX, gridMaxY, 1, -0.3, 0, "horizontal", "bilinear"}, + {gridMaxX + 1e-11, gridMaxY + 1e-11, 1, -0.3, 0, "horizontal", + "bilinear"}, + {165.9, -37.3, 0.70833334, -0.32083334, 0, "horizontal", "bilinear"}, + {165.9, -37.3, 0.70833334, -0.32083334, 0.4525, "3d", "bilinear"}, + + {gridMinX, gridMinY, 0.4, -0.2, 0, "horizontal", "geocentric_bilinear"}, + {gridMaxX, gridMinY, 0.5, -0.25, 0, "horizontal", + "geocentric_bilinear"}, + {gridMinX, gridMaxY, 0.8, -0.4, 0, "horizontal", "geocentric_bilinear"}, + {gridMaxX, gridMaxY, 1, -0.3, 0, "horizontal", "geocentric_bilinear"}, + {165.9, -37.3, 0.7083692044608846, -0.3209642339711405, 0, "horizontal", + "geocentric_bilinear"}, + {165.9, -37.3, 0.7083692044608846, -0.3209642339711405, 0.4525, "3d", + "geocentric_bilinear"}, + }; + + for (const auto &testPoint : testPoints) { + j["components"][0]["displacement_type"] = testPoint.displacement_type; + j["components"][0]["spatial_model"]["interpolation_method"] = + testPoint.interpolation_method; + Evaluator<Grid, GridSet, EvaluatorIface> eval( + MasterFile::parse(j.dump()), iface, a, b); + + const double lon = testPoint.lon; + const double lat = testPoint.lat; + double newLon; + double newLat; + double newZ; + EXPECT_TRUE(eval.forward(iface, DegToRad(lon), DegToRad(lat), zVal, + tValid, newLon, newLat, newZ)) + << lon << " " << lat << " " << testPoint.displacement_type + << testPoint.interpolation_method; + EXPECT_NEAR(newZ - zVal, tFactor * testPoint.expected_dz, 1e-8) + << lon << " " << lat << " " << testPoint.displacement_type + << testPoint.interpolation_method; + + double de; + double dn; + DeltaLongLatToEastingNorthing(DegToRad(lat), newLon - DegToRad(lon), + newLat - DegToRad(lat), a, b, de, dn); + EXPECT_NEAR(de, tFactor * testPoint.expected_de, 1e-8) + << lon << " " << lat << " " << testPoint.displacement_type + << testPoint.interpolation_method; + EXPECT_NEAR(dn, tFactor * testPoint.expected_dn, 1e-8) + << lon << " " << lat << " " << testPoint.displacement_type + << testPoint.interpolation_method; + + if (lon == gridMinX && lat == gridMinY) { + // Redo the exact same test, to test caching + double newLon2; + double newLat2; + double newZ2; + EXPECT_TRUE(eval.forward(iface, DegToRad(lon), DegToRad(lat), zVal, + tValid, newLon2, newLat2, newZ2)); + EXPECT_EQ(newLon2, newLon); + EXPECT_EQ(newLat2, newLat); + EXPECT_EQ(newZ2, newZ); + + // Shift in longitude + EXPECT_TRUE(eval.forward(iface, DegToRad(lon - gridResX / 2), + DegToRad(lat), zVal, tValid, newLon2, + newLat2, newZ2)); + + // Redo test at original position + EXPECT_TRUE(eval.forward(iface, DegToRad(lon), DegToRad(lat), zVal, + tValid, newLon2, newLat2, newZ2)); + EXPECT_EQ(newLon2, newLon); + EXPECT_EQ(newLat2, newLat); + EXPECT_EQ(newZ2, newZ); + + // Shift in latitude + EXPECT_TRUE(eval.forward(iface, DegToRad(lon), + DegToRad(lat - gridResY / 2), zVal, tValid, + newLon2, newLat2, newZ2)); + + // Redo test at original position + EXPECT_TRUE(eval.forward(iface, DegToRad(lon), DegToRad(lat), zVal, + tValid, newLon2, newLat2, newZ2)); + EXPECT_EQ(newLon2, newLon); + EXPECT_EQ(newLat2, newLat); + EXPECT_EQ(newZ2, newZ); + } + } + + // Test inverse() + { + j["horizontal_offset_method"] = "addition"; + j["components"][0]["displacement_type"] = "3d"; + j["components"][0]["spatial_model"]["interpolation_method"] = + "bilinear"; + Evaluator<Grid, GridSet, EvaluatorIface> eval( + MasterFile::parse(j.dump()), iface, a, b); + + const double lon = 165.9; + const double lat = -37.3; + double newLon; + double newLat; + double newZ; + EXPECT_TRUE(eval.forward(iface, DegToRad(lon), DegToRad(lat), zVal, + tValid, newLon, newLat, newZ)); + + double invLon; + double invLat; + double invZ; + EXPECT_TRUE(eval.inverse(iface, newLon, newLat, newZ, tValid, invLon, + invLat, invZ)); + EXPECT_NEAR(RadToDeg(invLon), lon, 1e-10); + EXPECT_NEAR(RadToDeg(invLat), lat, 1e-10); + EXPECT_NEAR(invZ, zVal, 1e-4); + } + + // Test horizontal_offset_method = geocentric + { + j["horizontal_offset_method"] = "geocentric"; + j["components"][0]["displacement_type"] = "3d"; + j["components"][0]["spatial_model"]["interpolation_method"] = + "bilinear"; + Evaluator<Grid, GridSet, EvaluatorIface> eval( + MasterFile::parse(j.dump()), iface, a, b); + + const double lon = gridMinX; + const double lat = gridMinY; + double newLon; + double newLat; + double newZ; + EXPECT_TRUE(eval.forward(iface, DegToRad(lon), DegToRad(lat), zVal, + tValid, newLon, newLat, newZ)); + + double de; + double dn; + constexpr double expected_de = 0.40000000948081327; + constexpr double expected_dn = -0.19999999810542682; + DeltaLongLatToEastingNorthing(DegToRad(lat), newLon - DegToRad(lon), + newLat - DegToRad(lat), a, b, de, dn); + EXPECT_NEAR(de, tFactor * expected_de, 1e-10); + EXPECT_NEAR(dn, tFactor * expected_dn, 1e-10); + EXPECT_NEAR(newZ - zVal, tFactor * 0.84, 1e-4); + } +} + +// --------------------------------------------------------------------------- + +TEST(defmodel, evaluator_projected_crs) { + + json j(getMinValidContent()); + j["horizontal_offset_method"] = "addition"; + j["horizontal_offset_unit"] = "metre"; + j["vertical_offset_unit"] = "metre"; + constexpr double gridMinX = 10000; + constexpr double gridMinY = 20000; + constexpr double gridMaxX = 30000; + constexpr double gridMaxY = 40000; + constexpr double gridResX = gridMaxX - gridMinX; + constexpr double gridResY = gridMaxY - gridMinY; + + j["extent"] + ["parameters"] = {{"bbox", {gridMinX, gridMinY, gridMaxX, gridMaxY}}}; + j["components"] = { + {{"displacement_type", "horizontal"}, + {"uncertainty_type", "none"}, + {"extent", + {{"type", "bbox"}, + {"parameters", + {{"bbox", {gridMinX, gridMinY, gridMaxX, gridMaxY}}}}}}, + {"spatial_model", + { + {"type", "GeoTIFF"}, + {"interpolation_method", "bilinear"}, + {"filename", "bla.tif"}, + }}, + {"time_function", {{"type", "constant"}}}}}; + + struct Grid : public GridPrototype { + bool getEastingNorthingOffset(int ix, int iy, double &eastingOffset, + double &northingOffset) const { + if (ix == 0 && iy == 0) { + eastingOffset = 0.4; + northingOffset = -0.2; + } else if (ix == 1 && iy == 0) { + eastingOffset = 0.5; + northingOffset = -0.25; + } else if (ix == 0 && iy == 1) { + eastingOffset = 0.8; + northingOffset = -0.4; + } else if (ix == 1 && iy == 1) { + eastingOffset = 1.; + northingOffset = -0.3; + } else { + return false; + } + return true; + } + +#ifdef DEBUG_DEFMODEL + std::string name() const { return std::string(); } +#endif + }; + + struct GridSet : public GridSetPrototype<Grid> { + + Grid grid{}; + + GridSet() { + grid.minx = gridMinX; + grid.miny = gridMinY; + grid.resx = gridResX; + grid.resy = gridResY; + grid.width = 2; + grid.height = 2; + } + + const Grid *gridAt(double /*x */, double /* y */) { return &grid; } + }; + + struct EvaluatorIface : public EvaluatorIfacePrototype<Grid, GridSet> { + std::unique_ptr<GridSet> open(const std::string &filename) { + if (filename != "bla.tif") + return nullptr; + return std::unique_ptr<GridSet>(new GridSet()); + } + + bool isGeographicCRS(const std::string & /* crsDef */) { return false; } + +#ifdef DEBUG_DEFMODEL + void log(const std::string & /* msg */) {} +#endif + }; + EvaluatorIface iface; + + constexpr double a = 6378137; + constexpr double b = 6356752.314140; + constexpr double tValid = 2018; + constexpr double zVal = 100; + + Evaluator<Grid, GridSet, EvaluatorIface> eval(MasterFile::parse(j.dump()), + iface, a, b); + + double newX; + double newY; + double newZ; + EXPECT_TRUE(eval.forward(iface, gridMinX, gridMinY, zVal, tValid, newX, + newY, newZ)); + EXPECT_NEAR(newX - gridMinX, 0.4, 1e-8); + EXPECT_NEAR(newY - gridMinY, -0.2, 1e-8); + EXPECT_NEAR(newZ - zVal, 0, 1e-8); + + { + json jcopy(j); + jcopy["horizontal_offset_unit"] = "degree"; + EXPECT_THROW((Evaluator<Grid, GridSet, EvaluatorIface>( + MasterFile::parse(jcopy.dump()), iface, a, b)), + EvaluatorException); + } + + { + json jcopy(j); + jcopy["horizontal_offset_method"] = "geocentric"; + EXPECT_THROW((Evaluator<Grid, GridSet, EvaluatorIface>( + MasterFile::parse(jcopy.dump()), iface, a, b)), + EvaluatorException); + } + + { + json jcopy(j); + jcopy["components"][0]["spatial_model"]["interpolation_method"] = + "geocentric_bilinear"; + EXPECT_THROW((Evaluator<Grid, GridSet, EvaluatorIface>( + MasterFile::parse(jcopy.dump()), iface, a, b)), + EvaluatorException); + } +} + +} // namespace + +#ifdef _MSC_VER +#pragma warning(pop) +#endif |
