.. _fouc_s: ******************************************************************************** Foucaut Sinusoidal ******************************************************************************** .. image:: ./images/fouc_s.png :scale: 50% :alt: Foucaut Sinusoidal The `y`-axis is based upon a weighted mean of the cylindrical equal-area and the sinusoidal projections. Parameter :math:`n=n` is the weighting factor where :math:`0 <= n <= 1`. .. math:: x &= \lambda \cos \phi / (n + (1 - n) \ cos \phi) y &= n \phi + (1 - n) \sin \phi For the inverse, the Newton-Raphson method can be used to determine :math:`\phi` from the equation for :math:`y` above. As :math:`n \rightarrow 0` and :math:`\phi \rightarrow \pi/2`, convergence is slow but for :math:`n = 0`, :math:`\phi = \sin^1y` Parameters ################################################################################ .. note:: All parameters are optional for the Foucaut Sinusoidal projection. .. option:: +n= Weighting factor. Value should be in the interval 0-1. .. include:: ../options/lon_0.rst .. include:: ../options/R.rst .. include:: ../options/x_0.rst .. include:: ../options/y_0.rst