.. _mill: ******************************************************************************** Miller Cylindrical ******************************************************************************** The Miller cylindrical projection is a modified Mercator projection, proposed by Osborn Maitland Miller in 1942. The latitude is scaled by a factor of :math:`\frac{4}{5}`, projected according to Mercator, and then the result is multiplied by :math:`\frac{5}{4}` to retain scale along the equator. +---------------------+--------------------------------------------------------------------------------+ | **Classification** | Neither conformal nor equal area cylindrical | +---------------------+--------------------------------------------------------------------------------+ | **Available forms** | Forward and inverse spherical | +---------------------+--------------------------------------------------------------------------------+ | **Defined area** | Global, but best used near the equator | +---------------------+--------------------------------------------------------------------------------+ | **Implemented by** | Gerald I. Evenden | +---------------------+--------------------------------------------------------------------------------+ | **Options** | +---------------------+--------------------------------------------------------------------------------+ | `+lat_0` | Latitude of origin (Default to 0) | +---------------------+--------------------------------------------------------------------------------+ .. image:: ./images/mill.png :scale: 50% :alt: Miller Cylindrical Usage ######## The Miller Cylindrical projection is used for world maps and in several atlases, including the National Atlas of the United States (USGS, 1970, p. 330-331) [Snyder1987]_. Example using Central meridian 90°W:: $ echo -100 35 | proj +proj=mill +lon_0=90w -1113194.91 4061217.24 Mathematical definition ####################### The formulas describing the Miller projection are all taken from Snyder's manuals [Snyder1987]_. Forward projection ================== .. math:: x = \lambda .. math:: y = 1.25 * \ln \left[ \tan \left(\frac{\pi}{4} + 0.4 * \phi \right) \right] Inverse projection ================== .. math:: \lambda = x .. math:: \phi = 2.5 * ( \arctan \left[ e^{0.8 * y} \right] - \frac{\pi}{4} ) Further reading ############### #. `Wikipedia `_