/****************************************************************************** * Project: PROJ * Purpose: Make C99 math functions available on C89 systems * Author: Kristian Evers * ****************************************************************************** * Copyright (c) 2018, Kristian Evers * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. *****************************************************************************/ #include "proj_math.h" #if !(defined(HAVE_C99_MATH) && HAVE_C99_MATH) /* Compute hypotenuse */ double pj_hypot(double x, double y) { x = fabs(x); y = fabs(y); if ( x < y ) { x /= y; return ( y * sqrt( 1. + x * x ) ); } else { y /= (x != 0.0 ? x : 1.0); return ( x * sqrt( 1. + y * y ) ); } } /* Compute log(1+x) accurately */ double pj_log1p(double x) { volatile double y = 1 + x, z = y - 1; /* Here's the explanation for this magic: y = 1 + z, exactly, and z * approx x, thus log(y)/z (which is nearly constant near z = 0) returns * a good approximation to the true log(1 + x)/x. The multiplication x * * (log(y)/z) introduces little additional error. */ return z == 0 ? x : x * log(y) / z; } /* Compute asinh(x) accurately */ double pj_asinh(double x) { double y = fabs(x); /* Enforce odd parity */ y = log1p(y * (1 + y/(hypot(1.0, y) + 1))); return x > 0 ? y : (x < 0 ? -y : x); } /* Returns 0 if not a NaN and non-zero if val is a NaN */ int pj_isnan (double x) { /* cppcheck-suppress duplicateExpression */ return x != x; } #endif /* !(defined(HAVE_C99_MATH) && HAVE_C99_MATH) */