1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
|
'''
Plot map data in different projections supported by PROJ.4
Call with:
> python plot.py plotdefs outdir [plotname, [plotname, [plotname, ...]]]
The output dir is optional. Uses current dir if not set.
Inputs:
------
plotdefs: A JSON file with setup for each auto-generated plot.
outdir: Directory to put the plots in.
plotname: A list of plot names within the plotdefs file. More
than one plotname can be given at once.
Plot definitions:
----------------
Plots are defined by a JSON dict. A plot is defined by a name, filename,
bounding box (lat/long space), a proj-string, plottype and resolution.
An example of the setup for the plot for the Airy projection is shown below:
{
"filename": "airy.png",
"latmax": 90,
"latmin": -90,
"lonmax": 90,
"lonmin": -90,
"name": "airy",
"projstring": "+proj=airy",
"res": "low",
"type": "poly"
}
"res" can be either "low" or "med" and "type" can be either "poly"(gon)
or "line". The rest of the inputs are fairly free form.
Change PROJ to path on your local system before running the script.
'''
from __future__ import print_function
from __future__ import division
import os
import os.path
import shutil
import sys
import json
import subprocess
import functools
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
import fiona
from shapely.geometry import Polygon
from shapely.geometry import MultiPolygon
from shapely.geometry import shape
from shapely.ops import transform
from descartes import PolygonPatch
PROJ_COMMAND = os.environ.get('PROJ_EXE', '../../src/proj')
if not os.path.exists(PROJ_COMMAND):
PROJ = shutil.which(PROJ_COMMAND)
else:
PROJ = PROJ_COMMAND
PROJ_LIB = os.environ.get('PROJ_LIB', '../../data')
LINE_LOW = 'data/coastline.geojson'
LINE_MED = 'data/coastline50.geojson'
POLY_LOW = 'data/land.geojson'
POLY_MED = 'data/land50.geojson'
GRATICULE_WIDTH = 15
N_POINTS = 1000
# colors
COLOR_LAND = '#000000'
COLOR_COAST = '#000000'
COLOR_GRAT = '#888888'
def interp_coords(coords, tol):
'''
Interpolates extra coordinates when the euclidean distance between adjacent
points are larger than given tolerance.
The function tries to densify a list of coordinates based on a simple measure.
If two adjacent points in the input coordinate list are further away from each
other than the specified tolerance, the list will be densified between those two
points. Roughly speaking, a point will be inserted every `tol` between the
points.
Inputs:
-------
coords: 2xN numpy array with geodetic coordinates
tol: Euclidean distance tolerance.
Returns:
--------
A densified numpy array of coordinates. If tol < 0 the input array is returned
unchanged.
'''
if tol < 0:
return coords
x, y = coords
x = np.array(x)
y = np.array(y)
dsts = np.hypot(np.diff(x), np.diff(y))
# Points to the *beginning* of the segment.
I = np.where(dsts > tol)[0]
offset = 0
xy = []
for i in I:
# Add points that are already below tolerance.
xy.append((x[offset:i], y[offset:i]))
# Interpolate between points above tolerance.
n = int(np.ceil(dsts[i] / tol))
x1 = np.linspace(x[i], x[i + 1], n + 1)
y1 = np.linspace(y[i], y[i + 1], n + 1)
xy.append((x1[:-1], y1[:-1]))
offset = i + 1
xy.append((x[offset:], y[offset:]))
xy = np.concatenate(xy, axis=1)
return xy.T
def project(coordinates, proj_string, in_radians=False):
'''
Project geographical coordinates
Input:
------
coordinates: numpy ndarray of size (N,2) and type double.
longitude, latitude
proj_string: Definition of output projection
Out:
----
numpy ndarray with shape (N,2) with N pairs of 2D
coordinates (x, y).
'''
# proj expects binary input to be in radians
if not in_radians:
coordinates = np.deg2rad(coordinates)
coordinates = coordinates.astype(np.double, copy=False)
# set up cmd call. -b for binary in/out
args = [PROJ, '-b']
args.extend(proj_string.split(' '))
try:
proc = subprocess.Popen(args, stdin=subprocess.PIPE, stdout=subprocess.PIPE,
env={'PROJ_LIB': os.path.abspath(PROJ_LIB)})
except FileNotFoundError as e:
print("'proj' binary not found, set the PROJ_EXE environment variable "
"to point to your local 'proj' binary --%s--" % e)
exit(1)
stdout, _ = proc.communicate(coordinates.tobytes(order='C'))
out = np.frombuffer(stdout, dtype=np.double)
return np.reshape(out, (-1, 2))
def project_xy(x, y, proj_string):
'''
Wrapper for project() that works with shapely.ops.transform().
'''
a = project(np.column_stack((x, y)), proj_string)
return a.T
def meridian(lon, lat_min, lat_max):
'''
Calculate meridian coordinates.
'''
coords = np.zeros((N_POINTS, 2))
coords[:, 0] = lon
coords[:, 1] = np.linspace(lat_min, lat_max, N_POINTS)
return coords
def parallel(lat, lon_min, lon_max):
'''
Calculate parallel coordinates.
'''
coords = np.zeros((N_POINTS, 2))
coords[:, 0] = np.linspace(lon_min, lon_max, N_POINTS)
coords[:, 1] = lat
return coords
def build_graticule(lonmin=-180, lonmax=180, latmin=-85, latmax=85):
'''
Build graticule
'''
# we might get unwanted floats
lonmin = int(lonmin)
lonmax = int(lonmax)
latmin = int(latmin)
latmax = int(latmax)
graticule = []
for lon in range(lonmin, lonmax+1, GRATICULE_WIDTH):
graticule.append(meridian(lon, latmin, latmax))
for lat in range(latmin, latmax+1, GRATICULE_WIDTH):
graticule.append(parallel(lat, lonmin, lonmax))
return graticule
def resample_polygon(polygon):
'''
Use interp_coords() to resample (multi)polygons.
'''
try:
xy = polygon.exterior.coords.xy
except AttributeError: #no xy's
return polygon
ext = interp_coords(xy, 2)
# interiors
rings = []
for int_ring in polygon.interiors:
rings.append(interp_coords(int_ring.coords.xy, 2))
return Polygon(ext, rings)
def plotproj(plotdef, data, outdir):
'''
Plot map.
'''
axes = plt.axes()
bounds = (plotdef['lonmin'], plotdef['latmin'], plotdef['lonmax'], plotdef['latmax'])
for geom in data.filter(bbox=bounds):
temp_pol = shape(geom['geometry'])
box = Polygon([
(plotdef['lonmin'], plotdef['latmin']),
(plotdef['lonmin'], plotdef['latmax']),
(plotdef['lonmax'], plotdef['latmax']),
(plotdef['lonmax'], plotdef['latmin']),
])
try:
temp_pol = temp_pol.intersection(box)
except Exception as e:
continue
if plotdef['type'] == 'poly':
if isinstance(temp_pol, MultiPolygon):
polys = [resample_polygon(polygon) for polygon in temp_pol]
pol = MultiPolygon(polys)
else:
pol = resample_polygon(temp_pol)
else:
pol = temp_pol
trans = functools.partial(project_xy, proj_string=plotdef['projstring'])
proj_geom = transform(trans, pol)
if plotdef['type'] == 'poly':
try:
patch = PolygonPatch(proj_geom, fc=COLOR_LAND, zorder=0)
axes.add_patch(patch)
except TypeError:
pass
else:
x, y = proj_geom.xy
axes.plot(x, y, color=COLOR_COAST, linewidth=0.5)
# Plot frame
frame = [
parallel(plotdef['latmin'], plotdef['lonmin'], plotdef['lonmax']),
parallel(plotdef['latmax'], plotdef['lonmin'], plotdef['lonmax']),
]
for line in frame:
line = project(line, plotdef['projstring'])
x = line[:, 0]
y = line[:, 1]
axes.plot(x, y, '-k')
graticule = build_graticule(
plotdef['lonmin'],
plotdef['lonmax'],
plotdef['latmin'],
plotdef['latmax'],
)
# Plot graticule
for feature in graticule:
feature = project(feature, plotdef['projstring'])
x = feature[:, 0]
y = feature[:, 1]
axes.plot(x, y, color=COLOR_GRAT, linewidth=0.4)
# Switch off the axis lines...
plt.axis('off')
# ... and additionally switch off the visibility of the axis lines and
# labels so they can be removed by "bbox_inches='tight'" when saving
axes.get_xaxis().set_visible(False)
axes.get_yaxis().set_visible(False)
font = {
'family': 'serif',
'color': 'black',
'style': 'italic',
'size': 12
}
# Make sure the plot is not stretched
axes.set_aspect('equal')
if not os.path.exists(outdir):
os.makedirs(outdir)
plt.savefig(outdir + '/' + plotdef['filename'],
dpi=400,
bbox_inches='tight')
# Clean up
axes = None
del axes
plt.close()
def main():
'''
Main function of plotting script.
Parses json-file with plot setups and runs the plotting
for each plot setup.
'''
data = {
('line', 'low'): fiona.open(LINE_LOW),
('line', 'med'): fiona.open(LINE_MED),
('poly', 'low'): fiona.open(POLY_LOW),
('poly', 'med'): fiona.open(POLY_MED),
}
if os.path.exists(sys.argv[1]):
# first argument is the JSON plot definition setup file
with open(sys.argv[1]) as plotsetup:
plotdefs = json.load(plotsetup)
else:
raise ValueError('No plot definition file entered')
plots = []
# second argument is the output dir
outdir = sys.argv[2]
# subsecond arguments are (optional) names of plot in plotdef.json
if len(sys.argv) > 3:
plots = sys.argv[3:len(sys.argv)]
for i, plotdef in enumerate(plotdefs):
if plots != [] and plotdef['name'] not in plots:
continue
print(i, plotdef['projstring'])
if 'skip' in plotdef.keys():
print('skipping')
continue
plotproj(plotdef, data[(plotdef['type'], plotdef['res'])], outdir)
for key in data:
data[key].close()
if __name__ == "__main__":
sys.exit(main())
|