1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
|
.. _helmert:
================================================================================
Helmert transform
================================================================================
.. versionadded:: 5.0.0
The Helmert transformation changes coordinates from one reference frame to
anoether by means of 3-, 4-and 7-parameter shifts, or one of their 6-, 8- and
14-parameter kinematic counterparts.
+-----------------+-------------------------------------------------------------------+
| **Alias** | helmert |
+-----------------+-------------------------------------------------------------------+
| **Domain** | 2D, 3D and 4D |
+-----------------+-------------------------------------------------------------------+
| **Input type** | Cartesian coordinates (spatial), decimalyears (temporal). |
+-----------------+-------------------------------------------------------------------+
| **Output type** | Cartesian coordinates (spatial), decimalyears (temporal). |
+-----------------+-------------------------------------------------------------------+
| **Input type** | Cartesian coordinates |
+-----------------+-------------------------------------------------------------------+
| **Output type** | Cartesian coordinates |
+-----------------+-------------------------------------------------------------------+
The Helmert transform, in all it's various incarnations, is used to perform reference
frame shifts. The transformation operates in cartesian space. It can be used to transform
planar coordinates from one datum to another, transform 3D cartesian
coordinates from one static reference frame to another or it can be used to do fully
kinematic transformations from global reference frames to local static frames.
All of the parameters described in the table above are marked as optional. This is true
as long as at least one parameter is defined in the setup of the transformation.
The behaviour of the transformation depends on which parameters are used in the setup.
For instance, if a rate of change parameter is specified a kinematic version of the
transformation is used.
The kinematic transformations require an observation time of the coordinate, as well
as a central epoch for the transformation. The latter is usually documented
alongside the rest of the transformation parameters for a given transformation.
The central epoch is controlled with the parameter `t_epoch`. The observation
time can either by stated as part of the coordinate when using PROJ's
4D-functionality or it can be controlled in the transformation setup by the
parameter `t_obs`. When `t_obs` is specified, all transformed coordinates are
treated as if they have the same observation time.
Examples
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Transforming coordinates from NAD72 to NAD83 using the 4 parameter 2D Helmert:
::
proj=helmert x=-9597.3572 y=.6112 s=0.304794780637 theta=-1.244048
Simplified transformations from ITRF2008/IGS08 to ETRS89 using 7 parameters:
::
proj=helmert x=0.67678 y=0.65495 z=-0.52827
rx=-0.022742 ry=0.012667 rz=0.022704 s=-0.01070
Transformation from `ITRF2000@2017.0` to `ITRF93@2017.0` using 15 parameters:
::
proj=helmert
x=0.0127 y=0.0065 z=-0.0209 s=0.00195
dx=-0.0029 dy=-0.0002 dz=-0.0006 ds=0.00001
rx=-0.00039 ry=0.00080 rz=-0.00114
drx=-0.00011 dry=-0.00019 drz=0.00007
t_epoch=1988.0 t_obs=2017.0 transpose
Parameters
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
.. note::
All parameters are optional but at least one should be used, otherwise the
operation will return the coordinates unchanged.
.. option:: +x=<value>
Translation of the x-axis given in meters.
.. option:: +y=<value>
Translation of the x-axis given in meters.
.. option:: +z=<value>
Translation of the z-axis given in meters.
.. option:: +s=<value>
Scale factor given in ppm.
.. option:: +rx=<value>
X-axis rotation in the 3D Helmert given arc seconds.
.. option:: +ry=<value>
Y-axis rotation in the 3D Helmert given in arc seconds.
.. option:: +rz=<value>
Z-axis rotation in the 3D Helmert given in arc seconds.
.. option:: +theta=<value>
Rotation angle in the 2D Helmert given in arc seconds.
.. option:: +dx=<value>
Translation rate of the x-axis given in m/year.
.. option:: +dy=<value>
Translation rate of the y-axis given in m/year.
.. option:: +dz=<value>
Translation rate of the z-axis given in m/year.
.. option:: +ds=<value>
Scale rate factor given in ppm/year.
.. option:: +drx=<value>
Rotation rate of the x-axis given in arc seconds/year.
.. option:: +dry=<value>
Rotation rate of the y-axis given in arc seconds/year.
.. option:: +drz=<value>
Rotation rate of the y-axis given in arc seconds/year.
.. option:: +t_epoch=<value>
Central epoch of transformation given in decimalyear. Only used
spatiotemporal transformations.
.. option:: +t_obs=<value>
Observation time of coordinate(s) given in decicalyear. Mostly useful
in 2D and 3D transformations where the observation time is not passed
as part of the input coordinate. Can be used to override the observation
time from the input coordinate.
.. option:: +exact
Use exact transformation equations.
See :eq:`rot_exact`
.. option:: +transpose
Transpose rotation matrix and follow the **Cordinate Frame** rotation
convention. If :option:`+transpose` is not added the **Position Vector**
rotation convention is used.
Mathematical description
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
In the notation used below, :math:`\hat{P}` is the rate of change of a given transformation
parameter :math:`P`. :math:`\dot{P}` is the kinematically adjusted version of :math:`P`,
described by
.. math::
:label: propagation
\dot{P}= P + \hat{P}\left(t - t_{central}\right)
where :math:`t` is the observation time of the coordinate and :math:`t_{central}` is
the central epoch of the transformation. Equation :eq:`propagation` can be used to
propagate all transformation parameters in time.
Superscripts of vectors denote the reference frame the coordinates in the vector belong to.
2D Helmert
-------------------------------------------------------------------------------
The simplest version of the Helmert transform is the 2D case. In the 2-dimensional
case only the horizontal coordinates are changed. The coordinates can be
translated, rotated and scale. Translation is controlled with the `x` and `y`
parameters. The rotation is determined by `theta` and the scale is controlled with
the `s` parameters.
.. note::
The scaling parameter `s` is unitless for the 2D Helmert, as opposed to the
3D version where the scaling parameter is given in units of ppm.
Mathematically the 2D Helmert is described as:
.. math::
:label: 4param
\begin{align}
\begin{bmatrix}
X \\
Y \\
\end{bmatrix}^B =
\begin{bmatrix}
T_x \\
T_y \\
\end{bmatrix} +
s
\begin{bmatrix}
\hphantom{-}\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{bmatrix}
\begin{bmatrix}
X \\
Y \\
\end{bmatrix}^A
\end{align}
:eq:`4param` can be extended to a time-varying kinematic version by
adjusting the parameters with :eq:`propagation` to :eq:`4param`, which yields
the kinematic 2D Helmert transform:
.. math::
:label: 8param
\begin{align}
\begin{bmatrix}
X \\
Y \\
\end{bmatrix}^B =
\begin{bmatrix}
\dot{T_x} \\
\dot{T_y} \\
\end{bmatrix} +
s(t)
\begin{bmatrix}
\hphantom{-}\cos \dot{\theta} & \sin \dot{\theta} \\
-\sin\ \dot{\theta} & \cos \dot{\theta} \\
\end{bmatrix}
\begin{bmatrix}
X \\
Y \\
\end{bmatrix}^A
\end{align}
All parameters in :eq:`8param` are determined by the use of :eq:`propagation`,
which applies the rate of change to each individual parameter for a given
timespan between :math:`t` and :math:`t_{central}`.
3D Helmert
-------------------------------------------------------------------------------
The general form of the 3D Helmert is
.. math::
:label: general-helmert
\begin{align}
V^B = T + \left(1 + s \times 10^{-6}\right) \mathbf{R} V^A
\end{align}
Where :math:`T` is a vector consisting of the three translation parameters, :math:`s`
is the scaling factor and :math:`\mathbf{R}` is a rotation matrix. :math:`V^A` and
:math:`V^B` are coordinate vectors, with :math:`V^A` being the input coordinate and
:math:`V^B` is the output coordinate.
The rotation matrix is composed of three rotation matrices, one for each axis:
.. math::
\begin{align}
\mathbf{R}_X &= \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos\phi & -\sin\phi\\ 0 & \sin\phi & \cos\phi \end{bmatrix}
\end{align}
.. math::
\begin{align}
\mathbf{R}_Y &= \begin{bmatrix} \cos\theta & 0 & \sin\theta\\ 0 & 1 & 0\\ -\sin\theta & 0 & \cos\theta \end{bmatrix}
\end{align}
.. math::
\begin{align}
\mathbf{R}_Z &= \begin{bmatrix} \cos\psi & -\sin\psi & 0\\ \sin\psi & \cos\psi & 0\\ 0 & 0 & 1 \end{bmatrix}
\end{align}
The three rotation matrices can be combined in one:
.. math::
\begin{align}
\mathbf{R} = \mathbf{R_X} \mathbf{R_Y} \mathbf{R_Y}
\end{align}
For :math:`\mathbf{R}`, this yields:
.. math::
:label: rot_exact
\begin{bmatrix}
\cos\theta \cos\psi & -\cos\phi \sin\psi + \sin\phi \sin\theta \cos\psi & \sin\phi \sin\psi + \cos\phi \sin\theta \cos\psi \\
\cos\theta\sin\psi & \cos\phi \cos\psi + \sin\phi \sin\theta \sin\psi & - \sin\phi \cos\psi + \cos\phi \sin\theta \sin\psi \\
-\sin\theta & \sin\phi \cos\theta & \cos\phi \cos\theta \\
\end{bmatrix}
Using the small angle approxition the rotation matrix can be simplified to
.. math::
:label: rot_approx
\begin{align} \mathbf{R} =
\begin{bmatrix}
1 & -R_z & R_y \\
Rz & 1 & -R_x \\
-Ry & R_x & 1 \\
\end{bmatrix}
\end{align}
Which allow us to express the most common version of the Helmert transform,
using the approximated rotation matrix:
.. math::
:label: 7param
\begin{align}
\begin{bmatrix}
X \\
Y \\
Z \\
\end{bmatrix}^B =
\begin{bmatrix}
T_x \\
T_y \\
T_z \\
\end{bmatrix} +
\left(1 + s \times 10^{-6}\right)
\begin{bmatrix}
1 & -R_z & R_y \\
Rz & 1 & -R_x \\
-Ry & R_x & 1 \\
\end{bmatrix}
\begin{bmatrix}
X \\
Y \\
Z \\
\end{bmatrix}^A
\end{align}
If the rotation matrix is transposed the transformation is effectively reversed.
This is cause for some confusion since there is no correct way of defining the
rotation matrix. Two conventions exists and they seem to be equally popular. PROJ
uses the **Position Vector** rotation convention. The rotation matrix can be transposed by
adding the :option:`+transpose` flag in the transformation setup which makes PROJ
follow the **Coordinate Frame** rotation convention.
Applying :eq:`propagation` we get the kinematic version of the approximated
3D Helmert:
.. math::
:label: 14param
\begin{align}
\begin{bmatrix}
X \\
Y \\
Z \\
\end{bmatrix}^B =
\begin{bmatrix}
\dot{T_x} \\
\dot{T_y} \\
\dot{T_z} \\
\end{bmatrix} +
\left(1 + \dot{s} \times 10^{-6}\right)
\begin{bmatrix}
1 & -\dot{R_z} & \dot{R_y} \\
\dot{R_z} & 1 & -\dot{R_x} \\
-\dot{R_y} & \dot{R_x} & 1 \\
\end{bmatrix}
\begin{bmatrix}
X \\
Y \\
Z \\
\end{bmatrix}^A
\end{align}
The Helmert transformation can be applied without using the rotation parameters,
in which case it becomes a simple translation of the origin of the coordinate
system. When using the Helmert in this version equation :eq:`general-helmert`
simplifies to:
.. math::
:label: 3param
\begin{align}
\begin{bmatrix}
X \\
Y \\
Z \\
\end{bmatrix}^B =
\begin{bmatrix}
T_x \\
T_y \\
T_z \\
\end{bmatrix} +
\begin{bmatrix}
X \\
Y \\
Z \\
\end{bmatrix}^A
\end{align}
That after application of :eq:`propagation` has the following kinematic
counterpart:
.. math::
:label: 6param
\begin{align}
\begin{bmatrix}
X \\
Y \\
Z \\
\end{bmatrix}^B =
\begin{bmatrix}
\dot{T_x} \\
\dot{T_y} \\
\dot{T_z} \\
\end{bmatrix} +
\begin{bmatrix}
X \\
Y \\
Z \\
\end{bmatrix}^A
\end{align}
|