1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
|
/*******************************************************************************
Transformation pipeline manager
Thomas Knudsen, 2016-05-20/2016-11-20
********************************************************************************
Geodetic transformations are typically organized in a number of
steps. For example, a datum shift could be carried out through
these steps:
1. Convert (latitude, longitude, ellipsoidal height) to
3D geocentric cartesian coordinates (X, Y, Z)
2. Transform the (X, Y, Z) coordinates to the new datum, using a
7 parameter Helmert transformation.
3. Convert (X, Y, Z) back to (latitude, longitude, ellipsoidal height)
If the height system used is orthometric, rather than ellipsoidal,
another step is needed at each end of the process:
1. Add the local geoid undulation (N) to the orthometric height
to obtain the ellipsoidal (i.e. geometric) height.
2. Convert (latitude, longitude, ellipsoidal height) to
3D geocentric cartesian coordinates (X, Y, Z)
3. Transform the (X, Y, Z) coordinates to the new datum, using a
7 parameter Helmert transformation.
4. Convert (X, Y, Z) back to (latitude, longitude, ellipsoidal height)
5. Subtract the local geoid undulation (N) from the ellipsoidal height
to obtain the orthometric height.
Additional steps can be added for e.g. change of vertical datum, so the
list can grow fairly long. None of the steps are, however, particularly
complex, and data flow is strictly from top to bottom.
Hence, in principle, the first example above could be implemented using
Unix pipelines:
cat my_coordinates | geographic_to_xyz | helmert | xyz_to_geographic > my_transformed_coordinates
in the grand tradition of Software Tools [1].
The proj pipeline driver implements a similar concept: Stringing together
a number of steps, feeding the output of one step to the input of the next.
It is a very powerful concept, that increases the range of relevance of the
proj.4 system substantially. It is, however, not a particularly intrusive
addition to the PROJ.4 code base: The implementation is by and large completed
by adding an extra projection called "pipeline" (i.e. this file), which
handles all business, and a small amount of added functionality in the
pj_init code, implementing support for multilevel, embedded pipelines.
Syntactically, the pipeline system introduces the "+step" keyword (which
indicates the start of each transformation step), and reintroduces the +inv
keyword (indicating that a given transformation step should run in reverse, i.e.
forward, when the pipeline is executed in inverse direction, and vice versa).
Hence, the first transformation example above, can be implemented as:
+proj=pipeline +step proj=cart +step proj=helmert <ARGS> +step proj=cart +inv
Where <ARGS> indicate the Helmert arguments: 3 translations (+x=..., +y=...,
+z=...), 3 rotations (+rx=..., +ry=..., +rz=...) and a scale factor (+s=...).
Following geodetic conventions, the rotations are given in arcseconds,
and the scale factor is given as parts-per-million.
[1] B. W. Kernighan & P. J. Plauger: Software tools.
Reading, Massachusetts, Addison-Wesley, 1976, 338 pp.
********************************************************************************
Thomas Knudsen, thokn@sdfe.dk, 2016-05-20
********************************************************************************
* Copyright (c) 2016, 2017, 2018 Thomas Knudsen / SDFE
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
********************************************************************************/
#define PJ_LIB__
#include <errno.h>
#include <math.h>
#include <stddef.h>
#include <string.h>
#include <stack>
#include <vector>
#include "geodesic.h"
#include "proj.h"
#include "proj_internal.h"
PROJ_HEAD(pipeline, "Transformation pipeline manager");
PROJ_HEAD(pop, "Retrieve coordinate value from pipeline stack");
PROJ_HEAD(push, "Save coordinate value on pipeline stack");
/* Projection specific elements for the PJ object */
namespace { // anonymous namespace
struct Step {
PJ* pj = nullptr;
bool omit_fwd = false;
bool omit_inv = false;
Step(PJ* pjIn, bool omitFwdIn, bool omitInvIn):
pj(pjIn), omit_fwd(omitFwdIn), omit_inv(omitInvIn) {}
Step(Step&& other): pj(std::move(other.pj)),
omit_fwd(other.omit_fwd),
omit_inv(other.omit_inv) { other.pj = nullptr; }
Step(const Step&) = delete;
Step& operator=(const Step&) = delete;
~Step() {
proj_destroy(pj);
}
};
struct Pipeline {
char **argv = nullptr;
char **current_argv = nullptr;
std::vector<Step> steps{};
std::stack<double> stack[4];
};
struct PushPop {
bool v1;
bool v2;
bool v3;
bool v4;
};
} // anonymous namespace
static PJ_COORD pipeline_forward_4d (PJ_COORD point, PJ *P);
static PJ_COORD pipeline_reverse_4d (PJ_COORD point, PJ *P);
static PJ_XYZ pipeline_forward_3d (PJ_LPZ lpz, PJ *P);
static PJ_LPZ pipeline_reverse_3d (PJ_XYZ xyz, PJ *P);
static PJ_XY pipeline_forward (PJ_LP lp, PJ *P);
static PJ_LP pipeline_reverse (PJ_XY xy, PJ *P);
static void pipeline_reassign_context( PJ* P, PJ_CONTEXT* ctx )
{
auto pipeline = static_cast<struct Pipeline*>(P->opaque);
for( auto& step: pipeline->steps )
proj_assign_context(step.pj, ctx);
}
static PJ_COORD pipeline_forward_4d (PJ_COORD point, PJ *P) {
auto pipeline = static_cast<struct Pipeline*>(P->opaque);
for( auto& step: pipeline->steps )
{
if( !step.omit_fwd )
{
point = proj_trans (step.pj, PJ_FWD, point);
if( point.xyzt.x == HUGE_VAL ) {
break;
}
}
}
return point;
}
static PJ_COORD pipeline_reverse_4d (PJ_COORD point, PJ *P) {
auto pipeline = static_cast<struct Pipeline*>(P->opaque);
for( auto iterStep = pipeline->steps.rbegin();
iterStep != pipeline->steps.rend(); ++iterStep )
{
const auto& step = *iterStep;
if( !step.omit_inv )
{
point = proj_trans (step.pj, PJ_INV, point);
if( point.xyzt.x == HUGE_VAL ) {
break;
}
}
}
return point;
}
static PJ_XYZ pipeline_forward_3d (PJ_LPZ lpz, PJ *P) {
PJ_COORD point = {{0,0,0,0}};
point.lpz = lpz;
auto pipeline = static_cast<struct Pipeline*>(P->opaque);
for( auto& step: pipeline->steps )
{
if( !step.omit_fwd )
{
point = pj_approx_3D_trans (step.pj, PJ_FWD, point);
if( point.xyzt.x == HUGE_VAL ) {
break;
}
}
}
return point.xyz;
}
static PJ_LPZ pipeline_reverse_3d (PJ_XYZ xyz, PJ *P) {
PJ_COORD point = {{0,0,0,0}};
point.xyz = xyz;
auto pipeline = static_cast<struct Pipeline*>(P->opaque);
for( auto iterStep = pipeline->steps.rbegin();
iterStep != pipeline->steps.rend(); ++iterStep )
{
const auto& step = *iterStep;
if( !step.omit_inv )
{
point = proj_trans (step.pj, PJ_INV, point);
if( point.xyzt.x == HUGE_VAL ) {
break;
}
}
}
return point.lpz;
}
static PJ_XY pipeline_forward (PJ_LP lp, PJ *P) {
PJ_COORD point = {{0,0,0,0}};
point.lp = lp;
auto pipeline = static_cast<struct Pipeline*>(P->opaque);
for( auto& step: pipeline->steps )
{
if( !step.omit_fwd )
{
point = pj_approx_2D_trans (step.pj, PJ_FWD, point);
if( point.xyzt.x == HUGE_VAL ) {
break;
}
}
}
return point.xy;
}
static PJ_LP pipeline_reverse (PJ_XY xy, PJ *P) {
PJ_COORD point = {{0,0,0,0}};
point.xy = xy;
auto pipeline = static_cast<struct Pipeline*>(P->opaque);
for( auto iterStep = pipeline->steps.rbegin();
iterStep != pipeline->steps.rend(); ++iterStep )
{
const auto& step = *iterStep;
if( !step.omit_inv )
{
point = pj_approx_2D_trans (step.pj, PJ_INV, point);
if( point.xyzt.x == HUGE_VAL ) {
break;
}
}
}
return point.lp;
}
static PJ *destructor (PJ *P, int errlev) {
if (nullptr==P)
return nullptr;
if (nullptr==P->opaque)
return pj_default_destructor (P, errlev);
auto pipeline = static_cast<struct Pipeline*>(P->opaque);
pj_dealloc (pipeline->argv);
pj_dealloc (pipeline->current_argv);
delete pipeline;
P->opaque = nullptr;
return pj_default_destructor(P, errlev);
}
/* count the number of args in pipeline definition, and mark all args as used */
static size_t argc_params (paralist *params) {
size_t argc = 0;
for (; params != nullptr; params = params->next) {
argc++;
params->used = 1;
}
return ++argc; /* one extra for the sentinel */
}
/* Sentinel for argument list */
static const char *argv_sentinel = "step";
/* turn paralist into argc/argv style argument list */
static char **argv_params (paralist *params, size_t argc) {
char **argv;
size_t i = 0;
argv = static_cast<char**>(pj_calloc (argc, sizeof (char *)));
if (nullptr==argv)
return nullptr;
for (; params != nullptr; params = params->next)
argv[i++] = params->param;
argv[i++] = const_cast<char*>(argv_sentinel);
return argv;
}
/* Being the special operator that the pipeline is, we have to handle the */
/* ellipsoid differently than usual. In general, the pipeline operation does */
/* not need an ellipsoid, but in some cases it is beneficial nonetheless. */
/* Unfortunately we can't use the normal ellipsoid setter in pj_init, since */
/* it adds a +ellps parameter to the global args if nothing else is specified*/
/* This is problematic since that ellipsoid spec is then passed on to the */
/* pipeline children. This is rarely what we want, so here we implement our */
/* own logic instead. If an ellipsoid is set in the global args, it is used */
/* as the pipeline ellipsoid. Otherwise we use GRS80 parameters as default. */
/* At last we calculate the rest of the ellipsoid parameters and */
/* re-initialize P->geod. */
static void set_ellipsoid(PJ *P) {
paralist *cur, *attachment;
int err = proj_errno_reset (P);
/* Break the linked list after the global args */
attachment = nullptr;
for (cur = P->params; cur != nullptr; cur = cur->next)
/* cur->next will always be non 0 given argv_sentinel presence, */
/* but this is far from being obvious for a static analyzer */
if (cur->next != nullptr && strcmp(argv_sentinel, cur->next->param) == 0) {
attachment = cur->next;
cur->next = nullptr;
break;
}
/* Check if there's any ellipsoid specification in the global params. */
/* If not, use GRS80 as default */
if (0 != pj_ellipsoid (P)) {
P->a = 6378137.0;
P->f = 1.0 / 298.257222101;
P->es = 2*P->f - P->f*P->f;
/* reset an "unerror": In this special use case, the errno is */
/* not an error signal, but just a reply from pj_ellipsoid, */
/* telling us that "No - there was no ellipsoid definition in */
/* the PJ you provided". */
proj_errno_reset (P);
}
P->a_orig = P->a;
P->es_orig = P->es;
pj_calc_ellipsoid_params (P, P->a, P->es);
geod_init(P->geod, P->a, P->es / (1 + sqrt(P->one_es)));
/* Re-attach the dangling list */
/* Note: cur will always be non 0 given argv_sentinel presence, */
/* but this is far from being obvious for a static analyzer */
if( cur != nullptr )
cur->next = attachment;
proj_errno_restore (P, err);
}
static enum pj_io_units get_next_non_whatever_unit(struct Pipeline* pipeline, size_t step, PJ_DIRECTION dir) {
const auto& steps = pipeline->steps;
const auto nsteps = steps.size();
if (dir == PJ_FWD) {
for (size_t i = step+1; i<nsteps; i++) {
auto pj = steps[i].pj;
if (pj_left(pj) != pj_right(pj))
return pj_left(pj);
if (pj_left(pj) != PJ_IO_UNITS_WHATEVER)
return pj_left(pj);
if (pj_right(pj) != PJ_IO_UNITS_WHATEVER)
return pj_right(pj);
}
} else {
for (size_t i=step; i>0;) {
i--;
auto pj = steps[i].pj;
if (pj_right(pj) != pj_left(pj))
return pj_right(pj);
if (pj_right(pj) != PJ_IO_UNITS_WHATEVER)
return pj_right(pj);
if (pj_left(pj) != PJ_IO_UNITS_WHATEVER)
return pj_left(pj);
}
}
return PJ_IO_UNITS_WHATEVER;
}
PJ *OPERATION(pipeline,0) {
int i, nsteps = 0, argc;
int i_pipeline = -1, i_first_step = -1, i_current_step;
char **argv, **current_argv;
if( P->ctx->pipelineInitRecursiongCounter == 5 )
{
// Can happen for a string like:
// proj=pipeline step "x="""," u=" proj=pipeline step ste=""[" u=" proj=pipeline step ste="[" u=" proj=pipeline step ste="[" u=" proj=pipeline step ste="[" u=" proj=pipeline step ste="[" u=" proj=pipeline step ste="[" u=" proj=pipeline step ste="[" u=" proj=pipeline step ste="[" u=" proj=pipeline p step ste="[" u=" proj=pipeline step ste="[" u=" proj=pipeline step ste="[" u=" proj=pipeline step ste="[" u=" proj=pipeline step ""x="""""""""""
// Probably an issue with the quoting handling code
// But doesn't hurt to add an extra safety check
proj_log_error (P, "Pipeline: too deep recursion");
return destructor (P, PJD_ERR_MALFORMED_PIPELINE); /* ERROR: nested pipelines */
}
P->fwd4d = pipeline_forward_4d;
P->inv4d = pipeline_reverse_4d;
P->fwd3d = pipeline_forward_3d;
P->inv3d = pipeline_reverse_3d;
P->fwd = pipeline_forward;
P->inv = pipeline_reverse;
P->destructor = destructor;
P->reassign_context = pipeline_reassign_context;
/* Currently, the pipeline driver is a raw bit mover, enabling other operations */
/* to collaborate efficiently. All prep/fin stuff is done at the step levels. */
P->skip_fwd_prepare = 1;
P->skip_fwd_finalize = 1;
P->skip_inv_prepare = 1;
P->skip_inv_finalize = 1;
P->opaque = new (std::nothrow) Pipeline();
if (nullptr==P->opaque)
return destructor(P, ENOMEM);
argc = (int)argc_params (P->params);
auto pipeline = static_cast<struct Pipeline*>(P->opaque);
pipeline->argv = argv = argv_params (P->params, argc);
if (nullptr==argv)
return destructor (P, ENOMEM);
pipeline->current_argv = current_argv = static_cast<char**>(pj_calloc (argc, sizeof (char *)));
if (nullptr==current_argv)
return destructor (P, ENOMEM);
/* Do some syntactical sanity checking */
for (i = 0; i < argc; i++) {
if (0==strcmp (argv_sentinel, argv[i])) {
if (-1==i_pipeline) {
proj_log_error (P, "Pipeline: +step before +proj=pipeline");
return destructor (P, PJD_ERR_MALFORMED_PIPELINE);
}
if (0==nsteps)
i_first_step = i;
nsteps++;
continue;
}
if (0==strcmp ("proj=pipeline", argv[i])) {
if (-1 != i_pipeline) {
proj_log_error (P, "Pipeline: Nesting only allowed when child pipelines are wrapped in '+init's");
return destructor (P, PJD_ERR_MALFORMED_PIPELINE); /* ERROR: nested pipelines */
}
i_pipeline = i;
}
}
nsteps--; /* Last instance of +step is just a sentinel */
if (-1==i_pipeline)
return destructor (P, PJD_ERR_MALFORMED_PIPELINE); /* ERROR: no pipeline def */
if (0==nsteps)
return destructor (P, PJD_ERR_MALFORMED_PIPELINE); /* ERROR: no pipeline def */
set_ellipsoid(P);
/* Now loop over all steps, building a new set of arguments for each init */
i_current_step = i_first_step;
for (i = 0; i < nsteps; i++) {
int j;
int current_argc = 0;
int err;
PJ *next_step = nullptr;
/* Build a set of setup args for the current step */
proj_log_trace (P, "Pipeline: Building arg list for step no. %d", i);
/* First add the step specific args */
for (j = i_current_step + 1; 0 != strcmp ("step", argv[j]); j++)
current_argv[current_argc++] = argv[j];
i_current_step = j;
/* Then add the global args */
for (j = i_pipeline + 1; 0 != strcmp ("step", argv[j]); j++)
current_argv[current_argc++] = argv[j];
proj_log_trace (P, "Pipeline: init - %s, %d", current_argv[0], current_argc);
for (j = 1; j < current_argc; j++)
proj_log_trace (P, " %s", current_argv[j]);
err = proj_errno_reset (P);
P->ctx->pipelineInitRecursiongCounter ++;
next_step = pj_create_argv_internal (P->ctx, current_argc, current_argv);
P->ctx->pipelineInitRecursiongCounter --;
proj_log_trace (P, "Pipeline: Step %d (%s) at %p", i, current_argv[0], next_step);
if (nullptr==next_step) {
/* The step init failed, but possibly without setting errno. If so, we say "malformed" */
int err_to_report = proj_errno(P);
if (0==err_to_report)
err_to_report = PJD_ERR_MALFORMED_PIPELINE;
proj_log_error (P, "Pipeline: Bad step definition: %s (%s)", current_argv[0], pj_strerrno (err_to_report));
return destructor (P, err_to_report); /* ERROR: bad pipeline def */
}
next_step->parent = P;
proj_errno_restore (P, err);
/* Is this step inverted? */
for (j = 0; j < current_argc; j++) {
if (0==strcmp("inv", current_argv[j])) {
/* if +inv exists in both global and local args the forward operation should be used */
next_step->inverted = next_step->inverted == 0 ? 1 : 0;
}
}
bool omit_fwd = pj_param(P->ctx, next_step->params, "bomit_fwd").i != 0;
bool omit_inv = pj_param(P->ctx, next_step->params, "bomit_inv").i != 0;
pipeline->steps.emplace_back(next_step, omit_fwd, omit_inv);
proj_log_trace (P, "Pipeline at [%p]: step at [%p] (%s) done", P, next_step, current_argv[0]);
}
/* Require a forward path through the pipeline */
for( auto& step: pipeline->steps) {
PJ *Q = step.pj;
if ( ( Q->inverted && (Q->inv || Q->inv3d || Q->fwd4d) ) ||
(!Q->inverted && (Q->fwd || Q->fwd3d || Q->fwd4d) ) ) {
continue;
} else {
proj_log_error (P, "Pipeline: A forward operation couldn't be constructed");
return destructor (P, PJD_ERR_MALFORMED_PIPELINE);
}
}
/* determine if an inverse operation is possible */
for( auto& step: pipeline->steps) {
PJ *Q = step.pj;
if ( pj_has_inverse(Q) ) {
continue;
} else {
P->inv = nullptr;
P->inv3d = nullptr;
P->inv4d = nullptr;
break;
}
}
/* Replace PJ_IO_UNITS_WHATEVER with input/output units of neighbouring steps where */
/* it make sense. It does in most cases but not always, for instance */
/* proj=pipeline step proj=unitconvert xy_in=deg xy_out=rad step ... */
/* where the left-hand side units of the first step shouldn't be changed to RADIANS */
/* as it will result in deg->rad conversions in cs2cs and other applications. */
for (i=0; i<nsteps; i++) {
auto pj = pipeline->steps[i].pj;
if (pj_left(pj) == PJ_IO_UNITS_WHATEVER && pj_right(pj) == PJ_IO_UNITS_WHATEVER) {
pj->left = get_next_non_whatever_unit(pipeline, i, PJ_FWD);
pj->right = get_next_non_whatever_unit(pipeline, i, PJ_FWD);
}
}
for (i=nsteps; i>0;) {
--i;
auto pj = pipeline->steps[i].pj;
if (pj_left(pj) == PJ_IO_UNITS_WHATEVER && pj_right(pj) == PJ_IO_UNITS_WHATEVER) {
pj->right = get_next_non_whatever_unit(pipeline, i, PJ_INV);
pj->left = get_next_non_whatever_unit(pipeline, i, PJ_INV);
}
}
/* Check that units between each steps match each other, fail if they don't */
for (i = 0; i + 1 < nsteps; i++) {
enum pj_io_units curr_step_output = pj_right (pipeline->steps[i].pj);
enum pj_io_units next_step_input = pj_left (pipeline->steps[i+1].pj);
if ( curr_step_output == PJ_IO_UNITS_WHATEVER || next_step_input == PJ_IO_UNITS_WHATEVER )
continue;
if ( curr_step_output != next_step_input ) {
proj_log_error (P, "Pipeline: Mismatched units between step %d and %d", i+1, i+2);
return destructor (P, PJD_ERR_MALFORMED_PIPELINE);
}
}
proj_log_trace (P, "Pipeline: %d steps built. Determining i/o characteristics", nsteps);
/* Determine forward input (= reverse output) data type */
P->left = pj_left (pipeline->steps.front().pj);
/* Now, correspondingly determine forward output (= reverse input) data type */
P->right = pj_right (pipeline->steps.back().pj);
return P;
}
static PJ_COORD push(PJ_COORD point, PJ *P) {
if (P->parent == nullptr)
return point;
struct Pipeline *pipeline = static_cast<struct Pipeline*>(P->parent->opaque);
struct PushPop *pushpop = static_cast<struct PushPop*>(P->opaque);
if (pushpop->v1)
pipeline->stack[0].push(point.v[0]);
if (pushpop->v2)
pipeline->stack[1].push(point.v[1]);
if (pushpop->v3)
pipeline->stack[2].push(point.v[2]);
if (pushpop->v4)
pipeline->stack[3].push(point.v[3]);
return point;
}
static PJ_COORD pop(PJ_COORD point, PJ *P) {
if (P->parent == nullptr)
return point;
struct Pipeline *pipeline = static_cast<struct Pipeline*>(P->parent->opaque);
struct PushPop *pushpop = static_cast<struct PushPop*>(P->opaque);
if (pushpop->v1 && !pipeline->stack[0].empty()) {
point.v[0] = pipeline->stack[0].top();
pipeline->stack[0].pop();
}
if (pushpop->v2 && !pipeline->stack[1].empty()) {
point.v[1] = pipeline->stack[1].top();
pipeline->stack[1].pop();
}
if (pushpop->v3 && !pipeline->stack[2].empty()) {
point.v[2] = pipeline->stack[2].top();
pipeline->stack[2].pop();
}
if (pushpop->v4 && !pipeline->stack[3].empty()) {
point.v[3] = pipeline->stack[3].top();
pipeline->stack[3].pop();
}
return point;
}
static PJ *setup_pushpop(PJ *P) {
auto pushpop = static_cast<struct PushPop*>(pj_calloc (1, sizeof(struct PushPop)));
P->opaque = pushpop;
if (nullptr==P->opaque)
return destructor(P, ENOMEM);
if (pj_param_exists(P->params, "v_1"))
pushpop->v1 = true;
if (pj_param_exists(P->params, "v_2"))
pushpop->v2 = true;
if (pj_param_exists(P->params, "v_3"))
pushpop->v3 = true;
if (pj_param_exists(P->params, "v_4"))
pushpop->v4 = true;
P->left = PJ_IO_UNITS_WHATEVER;
P->right = PJ_IO_UNITS_WHATEVER;
return P;
}
PJ *OPERATION(push, 0) {
P->fwd4d = push;
P->inv4d = pop;
return setup_pushpop(P);
}
PJ *OPERATION(pop, 0) {
P->inv4d = push;
P->fwd4d = pop;
return setup_pushpop(P);
}
|