aboutsummaryrefslogtreecommitdiff
path: root/src/projections/mbtfpp.cpp
blob: 276a43eb0f65199dd028e2db35224bfb747209d6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#define PJ_LIB__

#include <math.h>

#include "proj.h"
#include "projects.h"

PROJ_HEAD(mbtfpp, "McBride-Thomas Flat-Polar Parabolic") "\n\tCyl, Sph";

#define CS  .95257934441568037152
#define FXC .92582009977255146156
#define FYC 3.40168025708304504493
#define C23 .66666666666666666666
#define C13 .33333333333333333333
#define ONEEPS  1.0000001


static XY s_forward (LP lp, PJ *P) {           /* Spheroidal, forward */
    XY xy = {0.0,0.0};
    (void) P;

    lp.phi = asin(CS * sin(lp.phi));
    xy.x = FXC * lp.lam * (2. * cos(C23 * lp.phi) - 1.);
    xy.y = FYC * sin(C13 * lp.phi);
    return xy;
}


static LP s_inverse (XY xy, PJ *P) {           /* Spheroidal, inverse */
    LP lp = {0.0,0.0};

    lp.phi = xy.y / FYC;
    if (fabs(lp.phi) >= 1.) {
        if (fabs(lp.phi) > ONEEPS) {
            proj_errno_set(P, PJD_ERR_TOLERANCE_CONDITION);
            return lp;
        } else {
            lp.phi = (lp.phi < 0.) ? -M_HALFPI : M_HALFPI;
        }
    } else
        lp.phi = asin(lp.phi);

    lp.lam = xy.x / ( FXC * (2. * cos(C23 * (lp.phi *= 3.)) - 1.) );
    if (fabs(lp.phi = sin(lp.phi) / CS) >= 1.) {
        if (fabs(lp.phi) > ONEEPS) {
            proj_errno_set(P, PJD_ERR_TOLERANCE_CONDITION);
            return lp;
        } else {
            lp.phi = (lp.phi < 0.) ? -M_HALFPI : M_HALFPI;
        }
    } else
        lp.phi = asin(lp.phi);

    return lp;
}


PJ *PROJECTION(mbtfpp) {

    P->es = 0.;
    P->inv = s_inverse;
    P->fwd = s_forward;

    return P;
}