aboutsummaryrefslogtreecommitdiff
path: root/src/raymath.c
blob: f5e30833cab3fe971d1d45cae43036aecd6551f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
/**********************************************************************************************
*
*   raymath
*
*   Some useful functions to work with Vector3, Matrix and Quaternions
*
*   Copyright (c) 2014 Ramon Santamaria (Ray San - raysan@raysanweb.com)
*
*   This software is provided "as-is", without any express or implied warranty. In no event
*   will the authors be held liable for any damages arising from the use of this software.
*
*   Permission is granted to anyone to use this software for any purpose, including commercial
*   applications, and to alter it and redistribute it freely, subject to the following restrictions:
*
*     1. The origin of this software must not be misrepresented; you must not claim that you
*     wrote the original software. If you use this software in a product, an acknowledgment
*     in the product documentation would be appreciated but is not required.
*
*     2. Altered source versions must be plainly marked as such, and must not be misrepresented
*     as being the original software.
*
*     3. This notice may not be removed or altered from any source distribution.
*
**********************************************************************************************/

#include "raymath.h"

#include <stdio.h>      // Used only on PrintMatrix()
#include <math.h>       // Standard math libary: sin(), cos(), tan()...
#include <stdlib.h>     // Used for abs()

//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
//...

//----------------------------------------------------------------------------------
// Module specific Functions Declaration
//----------------------------------------------------------------------------------
// ...

//----------------------------------------------------------------------------------
// Module Functions Definition - Vector3 math
//----------------------------------------------------------------------------------

// Add two vectors
Vector3 VectorAdd(Vector3 v1, Vector3 v2)
{
    Vector3 result;

    result.x = v1.x + v2.x;
    result.y = v1.y + v2.y;
    result.z = v1.z + v2.z;

    return result;
}

// Substract two vectors
Vector3 VectorSubtract(Vector3 v1, Vector3 v2)
{
    Vector3 result;

    result.x = v1.x - v2.x;
    result.y = v1.y - v2.y;
    result.z = v1.z - v2.z;

    return result;
}

// Calculate two vectors cross product
Vector3 VectorCrossProduct(Vector3 v1, Vector3 v2)
{
    Vector3 result;

    result.x = v1.y*v2.z - v1.z*v2.y;
    result.y = v1.z*v2.x - v1.x*v2.z;
    result.z = v1.x*v2.y - v1.y*v2.x;

    return result;
}

// Calculate one vector perpendicular vector
Vector3 VectorPerpendicular(Vector3 v)
{
    Vector3 result;

    float min = fabs(v.x);
    Vector3 cardinalAxis = {1.0f, 0.0f, 0.0f};

    if (fabs(v.y) < min)
    {
        min = fabs(v.y);
        cardinalAxis = (Vector3){0.0f, 1.0f, 0.0f};
    }

    if(fabs(v.z) < min)
    {
        cardinalAxis = (Vector3){0.0f, 0.0f, 1.0f};
    }

    result = VectorCrossProduct(v, cardinalAxis);

    return result;
}

// Calculate two vectors dot product
float VectorDotProduct(Vector3 v1, Vector3 v2)
{
    float result;

    result = v1.x*v2.x + v1.y*v2.y + v1.z*v2.z;

    return result;
}

// Calculate vector lenght
float VectorLength(const Vector3 v)
{
    float length;

    length = sqrt(v.x*v.x + v.y*v.y + v.z*v.z);

    return length;
}

// Scale provided vector
void VectorScale(Vector3 *v, float scale)
{
    v->x *= scale;
    v->y *= scale;
    v->z *= scale;
}

// Negate provided vector (invert direction)
void VectorNegate(Vector3 *v)
{
    v->x = -v->x;
    v->y = -v->y;
    v->z = -v->z;
}

// Normalize provided vector
void VectorNormalize(Vector3 *v)
{
    float length, ilength;

    length = VectorLength(*v);

    if (length == 0) length = 1;

    ilength = 1.0/length;

    v->x *= ilength;
    v->y *= ilength;
    v->z *= ilength;
}

// Calculate distance between two points
float VectorDistance(Vector3 v1, Vector3 v2)
{
    float result;

    float dx = v2.x - v1.x;
    float dy = v2.y - v1.y;
    float dz = v2.z - v1.z;

    result = sqrt(dx*dx + dy*dy + dz*dz);

    return result;
}

// Calculate linear interpolation between two vectors
Vector3 VectorLerp(Vector3 v1, Vector3 v2, float amount)
{
    Vector3 result;

    result.x = v1.x + amount * (v2.x - v1.x);
    result.y = v1.y + amount * (v2.y - v1.y);
    result.z = v1.z + amount * (v2.z - v1.z);

    return result;
}

// Calculate reflected vector to normal
Vector3 VectorReflect(Vector3 vector, Vector3 normal)
{
    // I is the original vector
    // N is the normal of the incident plane
    // R = I - (2 * N * ( DotProduct[ I,N] ))

    Vector3 result;

    float dotProduct = VectorDotProduct(vector, normal);

    result.x = vector.x - (2.0 * normal.x) * dotProduct;
    result.y = vector.y - (2.0 * normal.y) * dotProduct;
    result.z = vector.z - (2.0 * normal.z) * dotProduct;

    return result;
}

// Transforms a Vector3 with a given Matrix
void VectorTransform(Vector3 *v, Matrix mat)
{
    float x = v->x;
    float y = v->y;
    float z = v->z;

    //MatrixTranspose(&mat);

    v->x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12;
    v->y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13;
    v->z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14;
};

// Return a Vector3 init to zero
Vector3 VectorZero(void)
{
    Vector3 zero = { 0.0f, 0.0f, 0.0f };

    return zero;
}

//----------------------------------------------------------------------------------
// Module Functions Definition - Matrix math
//----------------------------------------------------------------------------------

// Returns an OpenGL-ready vector (glMultMatrixf)
float *GetMatrixVector(Matrix mat)
{
    static float vector[16];

    vector[0] = mat.m0;
    vector[1] = mat.m4;
    vector[2] = mat.m8;
    vector[3] = mat.m12;
    vector[4] = mat.m1;
    vector[5] = mat.m5;
    vector[6] = mat.m9;
    vector[7] = mat.m13;
    vector[8] = mat.m2;
    vector[9] = mat.m6;
    vector[10] = mat.m10;
    vector[11] = mat.m14;
    vector[12] = mat.m3;
    vector[13] = mat.m7;
    vector[14] = mat.m11;
    vector[15] = mat.m15;

    return vector;
}

// Compute matrix determinant
float MatrixDeterminant(Matrix mat)
{
    float result;

    // Cache the matrix values (speed optimization)
    float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3;
    float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7;
    float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11;
    float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15;

    result = a30*a21*a12*a03 - a20*a31*a12*a03 - a30*a11*a22*a03 + a10*a31*a22*a03 +
             a20*a11*a32*a03 - a10*a21*a32*a03 - a30*a21*a02*a13 + a20*a31*a02*a13 +
             a30*a01*a22*a13 - a00*a31*a22*a13 - a20*a01*a32*a13 + a00*a21*a32*a13 +
             a30*a11*a02*a23 - a10*a31*a02*a23 - a30*a01*a12*a23 + a00*a31*a12*a23 +
             a10*a01*a32*a23 - a00*a11*a32*a23 - a20*a11*a02*a33 + a10*a21*a02*a33 +
             a20*a01*a12*a33 - a00*a21*a12*a33 - a10*a01*a22*a33 + a00*a11*a22*a33;

    return result;
}

// Returns the trace of the matrix (sum of the values along the diagonal)
float MatrixTrace(Matrix mat)
{
    return (mat.m0 + mat.m5 + mat.m10 + mat.m15);
}

// Transposes provided matrix
void MatrixTranspose(Matrix *mat)
{
    Matrix temp;

    temp.m0 = mat->m0;
    temp.m1 = mat->m4;
    temp.m2 = mat->m8;
    temp.m3 = mat->m12;
    temp.m4 = mat->m1;
    temp.m5 = mat->m5;
    temp.m6 = mat->m9;
    temp.m7 = mat->m13;
    temp.m8 = mat->m2;
    temp.m9 = mat->m6;
    temp.m10 = mat->m10;
    temp.m11 = mat->m14;
    temp.m12 = mat->m3;
    temp.m13 = mat->m7;
    temp.m14 = mat->m11;
    temp.m15 = mat->m15;

    *mat = temp;
}

// Invert provided matrix
void MatrixInvert(Matrix *mat)
{
    Matrix temp;

    // Cache the matrix values (speed optimization)
    float a00 = mat->m0, a01 = mat->m1, a02 = mat->m2, a03 = mat->m3;
    float a10 = mat->m4, a11 = mat->m5, a12 = mat->m6, a13 = mat->m7;
    float a20 = mat->m8, a21 = mat->m9, a22 = mat->m10, a23 = mat->m11;
    float a30 = mat->m12, a31 = mat->m13, a32 = mat->m14, a33 = mat->m15;

    float b00 = a00*a11 - a01*a10;
    float b01 = a00*a12 - a02*a10;
    float b02 = a00*a13 - a03*a10;
    float b03 = a01*a12 - a02*a11;
    float b04 = a01*a13 - a03*a11;
    float b05 = a02*a13 - a03*a12;
    float b06 = a20*a31 - a21*a30;
    float b07 = a20*a32 - a22*a30;
    float b08 = a20*a33 - a23*a30;
    float b09 = a21*a32 - a22*a31;
    float b10 = a21*a33 - a23*a31;
    float b11 = a22*a33 - a23*a32;

    // Calculate the invert determinant (inlined to avoid double-caching)
    float invDet = 1/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06);

    temp.m0 = (a11*b11 - a12*b10 + a13*b09)*invDet;
    temp.m1 = (-a01*b11 + a02*b10 - a03*b09)*invDet;
    temp.m2 = (a31*b05 - a32*b04 + a33*b03)*invDet;
    temp.m3 = (-a21*b05 + a22*b04 - a23*b03)*invDet;
    temp.m4 = (-a10*b11 + a12*b08 - a13*b07)*invDet;
    temp.m5 = (a00*b11 - a02*b08 + a03*b07)*invDet;
    temp.m6 = (-a30*b05 + a32*b02 - a33*b01)*invDet;
    temp.m7 = (a20*b05 - a22*b02 + a23*b01)*invDet;
    temp.m8 = (a10*b10 - a11*b08 + a13*b06)*invDet;
    temp.m9 = (-a00*b10 + a01*b08 - a03*b06)*invDet;
    temp.m10 = (a30*b04 - a31*b02 + a33*b00)*invDet;
    temp.m11 = (-a20*b04 + a21*b02 - a23*b00)*invDet;
    temp.m12 = (-a10*b09 + a11*b07 - a12*b06)*invDet;
    temp.m13 = (a00*b09 - a01*b07 + a02*b06)*invDet;
    temp.m14 = (-a30*b03 + a31*b01 - a32*b00)*invDet;
    temp.m15 = (a20*b03 - a21*b01 + a22*b00)*invDet;

    *mat = temp;
}

// Normalize provided matrix
void MatrixNormalize(Matrix *mat)
{
    float det = MatrixDeterminant(*mat);

    mat->m0 /= det;
    mat->m1 /= det;
    mat->m2 /= det;
    mat->m3 /= det;
    mat->m4 /= det;
    mat->m5 /= det;
    mat->m6 /= det;
    mat->m7 /= det;
    mat->m8 /= det;
    mat->m9 /= det;
    mat->m10 /= det;
    mat->m11 /= det;
    mat->m12 /= det;
    mat->m13 /= det;
    mat->m14 /= det;
    mat->m15 /= det;
}

// Returns identity matrix
Matrix MatrixIdentity(void)
{
    Matrix result = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 };

    return result;
}

// Add two matrices
Matrix MatrixAdd(Matrix left, Matrix right)
{
    Matrix result = MatrixIdentity();

    result.m0 = left.m0 + right.m0;
    result.m1 = left.m1 + right.m1;
    result.m2 = left.m2 + right.m2;
    result.m3 = left.m3 + right.m3;
    result.m4 = left.m4 + right.m4;
    result.m5 = left.m5 + right.m5;
    result.m6 = left.m6 + right.m6;
    result.m7 = left.m7 + right.m7;
    result.m8 = left.m8 + right.m8;
    result.m9 = left.m9 + right.m9;
    result.m10 = left.m10 + right.m10;
    result.m11 = left.m11 + right.m11;
    result.m12 = left.m12 + right.m12;
    result.m13 = left.m13 + right.m13;
    result.m14 = left.m14 + right.m14;
    result.m15 = left.m15 + right.m15;

    return result;
}

// Substract two matrices (left - right)
Matrix MatrixSubstract(Matrix left, Matrix right)
{
    Matrix result = MatrixIdentity();

    result.m0 = left.m0 - right.m0;
    result.m1 = left.m1 - right.m1;
    result.m2 = left.m2 - right.m2;
    result.m3 = left.m3 - right.m3;
    result.m4 = left.m4 - right.m4;
    result.m5 = left.m5 - right.m5;
    result.m6 = left.m6 - right.m6;
    result.m7 = left.m7 - right.m7;
    result.m8 = left.m8 - right.m8;
    result.m9 = left.m9 - right.m9;
    result.m10 = left.m10 - right.m10;
    result.m11 = left.m11 - right.m11;
    result.m12 = left.m12 - right.m12;
    result.m13 = left.m13 - right.m13;
    result.m14 = left.m14 - right.m14;
    result.m15 = left.m15 - right.m15;

    return result;
}

// Returns translation matrix
Matrix MatrixTranslate(float x, float y, float z)
{
    Matrix result = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, x, y, z, 1 };

    return result;
}

// Create rotation matrix from axis and angle
// NOTE: Angle should be provided in radians
Matrix MatrixRotate(float angle, Vector3 axis)
{
    Matrix result;

    Matrix mat = MatrixIdentity();

    float x = axis.x, y = axis.y, z = axis.z;

    float length = sqrt(x*x + y*y + z*z);

    if ((length != 1) && (length != 0))
    {
        length = 1/length;
        x *= length;
        y *= length;
        z *= length;
    }

    float s = sinf(angle);
    float c = cosf(angle);
    float t = 1.0f - c;

    // Cache some matrix values (speed optimization)
    float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3;
    float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7;
    float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11;

    // Construct the elements of the rotation matrix
    float b00 = x*x*t + c, b01 = y*x*t + z*s, b02 = z*x*t - y*s;
    float b10 = x*y*t - z*s, b11 = y*y*t + c, b12 = z*y*t + x*s;
    float b20 = x*z*t + y*s, b21 = y*z*t - x*s, b22 = z*z*t + c;

    // Perform rotation-specific matrix multiplication
    result.m0 = a00*b00 + a10*b01 + a20*b02;
    result.m1 = a01*b00 + a11*b01 + a21*b02;
    result.m2 = a02*b00 + a12*b01 + a22*b02;
    result.m3 = a03*b00 + a13*b01 + a23*b02;
    result.m4 = a00*b10 + a10*b11 + a20*b12;
    result.m5 = a01*b10 + a11*b11 + a21*b12;
    result.m6 = a02*b10 + a12*b11 + a22*b12;
    result.m7 = a03*b10 + a13*b11 + a23*b12;
    result.m8 = a00*b20 + a10*b21 + a20*b22;
    result.m9 = a01*b20 + a11*b21 + a21*b22;
    result.m10 = a02*b20 + a12*b21 + a22*b22;
    result.m11 = a03*b20 + a13*b21 + a23*b22;
    result.m12 = mat.m12;
    result.m13 = mat.m13;
    result.m14 = mat.m14;
    result.m15 = mat.m15;

    return result;
}

/*
// Another implementation for MatrixRotate...
Matrix MatrixRotate(float angle, float x, float y, float z)
{
    Matrix result = MatrixIdentity();

    float c = cosf(angle);      // cosine
    float s = sinf(angle);      // sine
    float c1 = 1.0f - c;        // 1 - c

    float m0 = result.m0, m4 = result.m4, m8 = result.m8, m12 = result.m12,
          m1 = result.m1, m5 = result.m5, m9 = result.m9,  m13 = result.m13,
          m2 = result.m2, m6 = result.m6, m10 = result.m10, m14 = result.m14;

    // build rotation matrix
    float r0 = x * x * c1 + c;
    float r1 = x * y * c1 + z * s;
    float r2 = x * z * c1 - y * s;
    float r4 = x * y * c1 - z * s;
    float r5 = y * y * c1 + c;
    float r6 = y * z * c1 + x * s;
    float r8 = x * z * c1 + y * s;
    float r9 = y * z * c1 - x * s;
    float r10= z * z * c1 + c;

    // multiply rotation matrix
    result.m0 = r0*m0 + r4*m1 + r8*m2;
    result.m1 = r1*m0 + r5*m1 + r9*m2;
    result.m2 = r2*m0 + r6*m1 + r10*m2;
    result.m4 = r0*m4 + r4*m5 + r8*m6;
    result.m5 = r1*m4 + r5*m5 + r9*m6;
    result.m6 = r2*m4 + r6*m5 + r10*m6;
    result.m8 = r0*m8 + r4*m9 + r8*m10;
    result.m9 = r1*m8 + r5*m9 + r9*m10;
    result.m10 = r2*m8 + r6*m9 + r10*m10;
    result.m12 = r0*m12+ r4*m13 + r8*m14;
    result.m13 = r1*m12+ r5*m13 + r9*m14;
    result.m14 = r2*m12+ r6*m13 + r10*m14;

    return result;
}
*/

// Returns x-rotation matrix (angle in radians)
Matrix MatrixRotateX(float angle)
{
    Matrix result = MatrixIdentity();

    float cosres = (float)cos(angle);
    float sinres = (float)sin(angle);

    result.m5 = cosres;
    result.m6 = -sinres;
    result.m9 = sinres;
    result.m10 = cosres;

    return result;
}

// Returns y-rotation matrix (angle in radians)
Matrix MatrixRotateY(float angle)
{
    Matrix result = MatrixIdentity();

    float cosres = cosf(angle);
    float sinres = sinf(angle);

    result.m0 = cosres;
    result.m2 = sinres;
    result.m8 = -sinres;
    result.m10 = cosres;

    return result;
}

// Returns z-rotation matrix (angle in radians)
Matrix MatrixRotateZ(float angle)
{
    Matrix result = MatrixIdentity();

    float cosres = (float)cos(angle);
    float sinres = (float)sin(angle);

    result.m0 = cosres;
    result.m1 = -sinres;
    result.m4 = sinres;
    result.m5 = cosres;

    return result;
}

// Returns scaling matrix
Matrix MatrixScale(float x, float y, float z)
{
    Matrix result = { x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1 };

    return result;
}

// Returns two matrix multiplication
// NOTE: When multiplying matrices... the order matters!
Matrix MatrixMultiply(Matrix left, Matrix right)
{
    Matrix result;

    // Cache the matrix values (speed optimization)
    float a00 = left.m0, a01 = left.m1, a02 = left.m2, a03 = left.m3;
    float a10 = left.m4, a11 = left.m5, a12 = left.m6, a13 = left.m7;
    float a20 = left.m8, a21 = left.m9, a22 = left.m10, a23 = left.m11;
    float a30 = left.m12, a31 = left.m13, a32 = left.m14, a33 = left.m15;

    float b00 = right.m0, b01 = right.m1, b02 = right.m2, b03 = right.m3;
    float b10 = right.m4, b11 = right.m5, b12 = right.m6, b13 = right.m7;
    float b20 = right.m8, b21 = right.m9, b22 = right.m10, b23 = right.m11;
    float b30 = right.m12, b31 = right.m13, b32 = right.m14, b33 = right.m15;

    result.m0 = b00*a00 + b01*a10 + b02*a20 + b03*a30;
    result.m1 = b00*a01 + b01*a11 + b02*a21 + b03*a31;
    result.m2 = b00*a02 + b01*a12 + b02*a22 + b03*a32;
    result.m3 = b00*a03 + b01*a13 + b02*a23 + b03*a33;
    result.m4 = b10*a00 + b11*a10 + b12*a20 + b13*a30;
    result.m5 = b10*a01 + b11*a11 + b12*a21 + b13*a31;
    result.m6 = b10*a02 + b11*a12 + b12*a22 + b13*a32;
    result.m7 = b10*a03 + b11*a13 + b12*a23 + b13*a33;
    result.m8 = b20*a00 + b21*a10 + b22*a20 + b23*a30;
    result.m9 = b20*a01 + b21*a11 + b22*a21 + b23*a31;
    result.m10 = b20*a02 + b21*a12 + b22*a22 + b23*a32;
    result.m11 = b20*a03 + b21*a13 + b22*a23 + b23*a33;
    result.m12 = b30*a00 + b31*a10 + b32*a20 + b33*a30;
    result.m13 = b30*a01 + b31*a11 + b32*a21 + b33*a31;
    result.m14 = b30*a02 + b31*a12 + b32*a22 + b33*a32;
    result.m15 = b30*a03 + b31*a13 + b32*a23 + b33*a33;

    return result;
}

// Returns perspective projection matrix
Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far)
{
    Matrix result;

    float rl = (right - left);
    float tb = (top - bottom);
    float fn = (far - near);

    result.m0 = (near*2.0f) / rl;
    result.m1 = 0;
    result.m2 = 0;
    result.m3 = 0;

    result.m4 = 0;
    result.m5 = (near*2.0f) / tb;
    result.m6 = 0;
    result.m7 = 0;

    result.m8 = (right + left) / rl;
    result.m9 = (top + bottom) / tb;
    result.m10 = -(far + near) / fn;
    result.m11 = -1.0f;

    result.m12 = 0;
    result.m13 = 0;
    result.m14 = -(far*near*2.0f) / fn;
    result.m15 = 0;

    return result;
}

// Returns perspective projection matrix
Matrix MatrixPerspective(double fovy, double aspect, double near, double far)
{
    double top = near*tanf(fovy*PI / 360.0f);
    double right = top*aspect;

    return MatrixFrustum(-right, right, -top, top, near, far);
}

// Returns orthographic projection matrix
Matrix MatrixOrtho(double left, double right, double bottom, double top, double near, double far)
{
    Matrix result;

    float rl = (right - left);
    float tb = (top - bottom);
    float fn = (far - near);

    result.m0 = 2 / rl;
    result.m1 = 0;
    result.m2 = 0;
    result.m3 = 0;
    result.m4 = 0;
    result.m5 = 2 / tb;
    result.m6 = 0;
    result.m7 = 0;
    result.m8 = 0;
    result.m9 = 0;
    result.m10 = -2 / fn;
    result.m11 = 0;
    result.m12 = -(left + right) / rl;
    result.m13 = -(top + bottom) / tb;
    result.m14 = -(far + near) / fn;
    result.m15 = 1;

    return result;
}

// Returns camera look-at matrix (view matrix)
Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up)
{
    Matrix result;

    Vector3 z = VectorSubtract(eye, target);
    VectorNormalize(&z);
    Vector3 x = VectorCrossProduct(up, z);
    VectorNormalize(&x);
    Vector3 y = VectorCrossProduct(z, x);
    VectorNormalize(&y);

    result.m0 = x.x;
    result.m1 = x.y;
    result.m2 = x.z;
    result.m3 = -((x.x * eye.x) + (x.y * eye.y) + (x.z * eye.z));
    result.m4 = y.x;
    result.m5 = y.y;
    result.m6 = y.z;
    result.m7 = -((y.x * eye.x) + (y.y * eye.y) + (y.z * eye.z));
    result.m8 = z.x;
    result.m9 = z.y;
    result.m10 = z.z;
    result.m11 = -((z.x * eye.x) + (z.y * eye.y) + (z.z * eye.z));
    result.m12 = 0;
    result.m13 = 0;
    result.m14 = 0;
    result.m15 = 1;

    return result;
}

// Print matrix utility (for debug)
void PrintMatrix(Matrix m)
{
    printf("----------------------\n");
    printf("%2.2f %2.2f %2.2f %2.2f\n", m.m0, m.m4, m.m8, m.m12);
    printf("%2.2f %2.2f %2.2f %2.2f\n", m.m1, m.m5, m.m9, m.m13);
    printf("%2.2f %2.2f %2.2f %2.2f\n", m.m2, m.m6, m.m10, m.m14);
    printf("%2.2f %2.2f %2.2f %2.2f\n", m.m3, m.m7, m.m11, m.m15);
    printf("----------------------\n");
}

//----------------------------------------------------------------------------------
// Module Functions Definition - Quaternion math
//----------------------------------------------------------------------------------

// Computes the length of a quaternion
float QuaternionLength(Quaternion quat)
{
    return sqrt(quat.x*quat.x + quat.y*quat.y + quat.z*quat.z + quat.w*quat.w);
}

// Normalize provided quaternion
void QuaternionNormalize(Quaternion *q)
{
    float length, ilength;

    length = QuaternionLength(*q);

    if (length == 0) length = 1;

    ilength = 1.0/length;

    q->x *= ilength;
    q->y *= ilength;
    q->z *= ilength;
    q->w *= ilength;
}

// Calculate two quaternion multiplication
Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2)
{
    Quaternion result;

    float qax = q1.x, qay = q1.y, qaz = q1.z, qaw = q1.w;
    float qbx = q2.x, qby = q2.y, qbz = q2.z, qbw = q2.w;

    result.x = qax*qbw + qaw*qbx + qay*qbz - qaz*qby;
    result.y = qay*qbw + qaw*qby + qaz*qbx - qax*qbz;
    result.z = qaz*qbw + qaw*qbz + qax*qby - qay*qbx;
    result.w = qaw*qbw - qax*qbx - qay*qby - qaz*qbz;

    return result;
}

// Calculates spherical linear interpolation between two quaternions
Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount)
{
    Quaternion result;

    float cosHalfTheta =  q1.x*q2.x + q1.y*q2.y + q1.z*q2.z + q1.w*q2.w;

    if (fabs(cosHalfTheta) >= 1.0f) result = q1;
    else
    {
        float halfTheta = acos(cosHalfTheta);
        float sinHalfTheta = sqrt(1.0f - cosHalfTheta*cosHalfTheta);

        if (fabs(sinHalfTheta) < 0.001f)
        {
            result.x = (q1.x*0.5f + q2.x*0.5f);
            result.y = (q1.y*0.5f + q2.y*0.5f);
            result.z = (q1.z*0.5f + q2.z*0.5f);
            result.w = (q1.w*0.5f + q2.w*0.5f);
        }
        else
        {
            float ratioA = sin((1 - amount)*halfTheta) / sinHalfTheta;
            float ratioB = sin(amount*halfTheta) / sinHalfTheta;

            result.x = (q1.x*ratioA + q2.x*ratioB);
            result.y = (q1.y*ratioA + q2.y*ratioB);
            result.z = (q1.z*ratioA + q2.z*ratioB);
            result.w = (q1.w*ratioA + q2.w*ratioB);
        }
    }

    return result;
}

// Returns a quaternion for a given rotation matrix
Quaternion QuaternionFromMatrix(Matrix matrix)
{
    Quaternion result;

    float trace = MatrixTrace(matrix);

    if (trace > 0)
    {
        float s = (float)sqrt(trace + 1) * 2;
        float invS = 1 / s;

        result.w = s * 0.25;
        result.x = (matrix.m6 - matrix.m9) * invS;
        result.y = (matrix.m8 - matrix.m2) * invS;
        result.z = (matrix.m1 - matrix.m4) * invS;
    }
    else
    {
        float m00 = matrix.m0, m11 = matrix.m5, m22 = matrix.m10;

        if (m00 > m11 && m00 > m22)
        {
            float s = (float)sqrt(1 + m00 - m11 - m22) * 2;
            float invS = 1 / s;

            result.w = (matrix.m6 - matrix.m9) * invS;
            result.x = s * 0.25;
            result.y = (matrix.m4 + matrix.m1) * invS;
            result.z = (matrix.m8 + matrix.m2) * invS;
        }
        else if (m11 > m22)
        {
            float s = (float)sqrt(1 + m11 - m00 - m22) * 2;
            float invS = 1 / s;

            result.w = (matrix.m8 - matrix.m2) * invS;
            result.x = (matrix.m4 + matrix.m1) * invS;
            result.y = s * 0.25;
            result.z = (matrix.m9 + matrix.m6) * invS;
        }
        else
        {
            float s = (float)sqrt(1 + m22 - m00 - m11) * 2;
            float invS = 1 / s;

            result.w = (matrix.m1 - matrix.m4) * invS;
            result.x = (matrix.m8 + matrix.m2) * invS;
            result.y = (matrix.m9 + matrix.m6) * invS;
            result.z = s * 0.25;
        }
    }

    return result;
}

// Returns a matrix for a given quaternion
Matrix QuaternionToMatrix(Quaternion q)
{
    Matrix result;

    float x = q.x, y = q.y, z = q.z, w = q.w;

    float x2 = x + x;
    float y2 = y + y;
    float z2 = z + z;

    float xx = x*x2;
    float xy = x*y2;
    float xz = x*z2;

    float yy = y*y2;
    float yz = y*z2;
    float zz = z*z2;

    float wx = w*x2;
    float wy = w*y2;
    float wz = w*z2;

    result.m0 = 1 - (yy + zz);
    result.m1 = xy - wz;
    result.m2 = xz + wy;
    result.m3 = 0;
    result.m4 = xy + wz;
    result.m5 = 1 - (xx + zz);
    result.m6 = yz - wx;
    result.m7 = 0;
    result.m8 = xz - wy;
    result.m9 = yz + wx;
    result.m10 = 1 - (xx + yy);
    result.m11 = 0;
    result.m12 = 0;
    result.m13 = 0;
    result.m14 = 0;
    result.m15 = 1;
    
    return result;
}

// Returns rotation quaternion for an angle and axis
// NOTE: angle must be provided in radians
Quaternion QuaternionFromAxisAngle(float angle, Vector3 axis)
{
    Quaternion result = { 0, 0, 0, 1 };

    if (VectorLength(axis) != 0.0)

    angle *= 0.5;

    VectorNormalize(&axis);

    result.x = axis.x * (float)sin(angle);
    result.y = axis.y * (float)sin(angle);
    result.z = axis.z * (float)sin(angle);
    result.w = (float)cos(angle);

    QuaternionNormalize(&result);

    return result;
}

// Returns the rotation angle and axis for a given quaternion
void QuaternionToAxisAngle(Quaternion q, float *outAngle, Vector3 *outAxis)
{
    if (fabs(q.w) > 1.0f) QuaternionNormalize(&q);

    Vector3 resAxis = { 0, 0, 0 };
    float resAngle = 0;

    resAngle = 2.0f * (float)acos(q.w);
    float den = (float)sqrt(1.0 - q.w * q.w);

    if (den > 0.0001f)
    {
        resAxis.x = q.x / den;
        resAxis.y = q.y / den;
        resAxis.z = q.z / den;
    }
    else
    {
        // This occurs when the angle is zero.
        // Not a problem: just set an arbitrary normalized axis.
        resAxis.x = 1.0;
    }

    *outAxis = resAxis;
    *outAngle = resAngle;
}

// Transform a quaternion given a transformation matrix
void QuaternionTransform(Quaternion *q, Matrix mat)
{
    float x = q->x;
    float y = q->y;
    float z = q->z;
    float w = q->w;

    q->x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12*w;
    q->y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13*w;
    q->z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14*w;
    q->w = mat.m3*x + mat.m7*y + mat.m11*z + mat.m15*w;
}