1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
|
#pragma once
#include <unordered_map>
#include <unordered_set>
namespace vcpkg::Graphs
{
enum class ExplorationStatus
{
// We have not visited this vertex
NOT_EXPLORED,
// We have visited this vertex but haven't visited all vertices in its subtree
PARTIALLY_EXPLORED,
// We have visited this vertex and all vertices in its subtree
FULLY_EXPLORED
};
template<class V, class U>
__interface AdjacencyProvider
{
std::vector<V> adjacency_list(const U& vertex) const;
U load_vertex_data(const V& vertex) const;
};
template<class V, class U>
static void topological_sort_internal(const V& vertex,
const AdjacencyProvider<V, U>& f,
std::unordered_map<V, ExplorationStatus>& exploration_status,
std::vector<U>& sorted)
{
ExplorationStatus& status = exploration_status[vertex];
switch (status)
{
case ExplorationStatus::FULLY_EXPLORED: return;
case ExplorationStatus::PARTIALLY_EXPLORED: Checks::exit_with_message(VCPKG_LINE_INFO, "cycle in graph");
case ExplorationStatus::NOT_EXPLORED:
{
status = ExplorationStatus::PARTIALLY_EXPLORED;
U vertex_data = f.load_vertex_data(vertex);
for (const V& neighbour : f.adjacency_list(vertex_data))
topological_sort_internal(neighbour, f, exploration_status, sorted);
sorted.push_back(std::move(vertex_data));
status = ExplorationStatus::FULLY_EXPLORED;
return;
}
default: Checks::unreachable(VCPKG_LINE_INFO);
}
}
template<class V, class U>
std::vector<U> topological_sort(const std::vector<V>& starting_vertices, const AdjacencyProvider<V, U>& f)
{
std::vector<U> sorted;
std::unordered_map<V, ExplorationStatus> exploration_status;
for (auto& vertex : starting_vertices)
{
topological_sort_internal(vertex, f, exploration_status, sorted);
}
return sorted;
}
template<class V>
struct GraphAdjacencyProvider final : AdjacencyProvider<V, V>
{
const std::unordered_map<V, std::unordered_set<V>>& vertices;
GraphAdjacencyProvider(const std::unordered_map<V, std::unordered_set<V>>& vertices) : vertices(vertices) {}
std::vector<V> adjacency_list(const V& vertex) const override
{
const std::unordered_set<V>& as_set = this->vertices.at(vertex);
return std::vector<V>(as_set.cbegin(), as_set.cend()); // TODO: Avoid redundant copy
}
V load_vertex_data(const V& vertex) const override { return vertex; }
};
template<class V>
struct Graph
{
public:
void add_vertex(V v) { this->vertices[v]; }
// TODO: Change with iterators
void add_vertices(const std::vector<V>& vs)
{
for (const V& v : vs)
{
this->vertices[v];
}
}
void add_edge(V u, V v)
{
this->vertices[v];
this->vertices[u].insert(v);
}
std::vector<V> topological_sort() const
{
GraphAdjacencyProvider<V> adjacency_provider{this->vertices};
std::unordered_map<V, int> indegrees = count_indegrees();
std::vector<V> sorted;
sorted.reserve(indegrees.size());
std::unordered_map<V, ExplorationStatus> exploration_status;
exploration_status.reserve(indegrees.size());
for (auto& pair : indegrees)
{
if (pair.second == 0) // Starting from vertices with indegree == 0. Not required.
{
V vertex = pair.first;
topological_sort_internal(vertex, adjacency_provider, exploration_status, sorted);
}
}
return sorted;
}
std::unordered_map<V, int> count_indegrees() const
{
std::unordered_map<V, int> indegrees;
for (auto& pair : this->vertices)
{
indegrees[pair.first];
for (V neighbour : pair.second)
{
++indegrees[neighbour];
}
}
return indegrees;
}
const std::unordered_map<V, std::unordered_set<V>>& adjacency_list() const { return this->vertices; }
std::vector<V> vertex_list() const
{
// why no &? it returns 0
std::vector<V> vertex_list;
for (const auto& vertex : this->vertices)
{
vertex_list.emplace_back(vertex.first);
}
return vertex_list;
}
private:
std::unordered_map<V, std::unordered_set<V>> vertices;
};
}
|