aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorThomas Knudsen <lastname DOT firstname AT gmail DOT com>2016-05-18 23:19:49 +0200
committerThomas Knudsen <lastname DOT firstname AT gmail DOT com>2016-05-18 23:19:49 +0200
commit1b17a573ffb07e9565e0df296e2a3a21bce8e971 (patch)
tree316289d764c2a8a5c90c0e92d543b5f28bf24171
parentbea2cd5c821ce37d157e5c4f3b2cc9fd059fee2d (diff)
downloadPROJ-1b17a573ffb07e9565e0df296e2a3a21bce8e971.tar.gz
PROJ-1b17a573ffb07e9565e0df296e2a3a21bce8e971.zip
Refactoring and adding self test for the last two projections
etmerc and utm completes the elimination of the ENTRYx style macros.
-rw-r--r--src/PJ_aea.c25
-rw-r--r--src/PJ_etmerc.c484
-rw-r--r--src/proj_etmerc.c347
3 files changed, 741 insertions, 115 deletions
diff --git a/src/PJ_aea.c b/src/PJ_aea.c
index 5f7c6c92..0efef484 100644
--- a/src/PJ_aea.c
+++ b/src/PJ_aea.c
@@ -331,28 +331,3 @@ int pj_leac_selftest (void) {
return pj_generic_selftest (e_args, s_args, tolerance_xy, tolerance_lp, 4, 4, fwd_in, e_fwd_expect, s_fwd_expect, inv_in, e_inv_expect, s_inv_expect);
}
-
-
-
-
-
-
-
-
-
-
-
-/***********************************************************************
- SELFTEST STUBS
-************************************************************************
-
-Selftest stubs temporarily placed here.
-
-To be removed as real selftest functions are added to the projection
-source files
-
-***********************************************************************/
-
-int pj_etmerc_selftest (void) {return 10000;}
-int pj_utm_selftest (void) {return 10000;}
-#endif
diff --git a/src/PJ_etmerc.c b/src/PJ_etmerc.c
new file mode 100644
index 00000000..d752bac9
--- /dev/null
+++ b/src/PJ_etmerc.c
@@ -0,0 +1,484 @@
+/*
+** libproj -- library of cartographic projections
+**
+** Copyright (c) 2008 Gerald I. Evenden
+*/
+
+/*
+** Permission is hereby granted, free of charge, to any person obtaining
+** a copy of this software and associated documentation files (the
+** "Software"), to deal in the Software without restriction, including
+** without limitation the rights to use, copy, modify, merge, publish,
+** distribute, sublicense, and/or sell copies of the Software, and to
+** permit persons to whom the Software is furnished to do so, subject to
+** the following conditions:
+**
+** The above copyright notice and this permission notice shall be
+** included in all copies or substantial portions of the Software.
+**
+** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+** EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+** MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+** IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+** CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
+** TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
+** SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+*/
+
+/* The code in this file is largly based upon procedures:
+ *
+ * Written by: Knud Poder and Karsten Engsager
+ *
+ * Based on math from: R.Koenig and K.H. Weise, "Mathematische
+ * Grundlagen der hoeheren Geodaesie und Kartographie,
+ * Springer-Verlag, Berlin/Goettingen" Heidelberg, 1951.
+ *
+ * Modified and used here by permission of Reference Networks
+ * Division, Kort og Matrikelstyrelsen (KMS), Copenhagen, Denmark
+*/
+
+
+#define PROJ_LIB__
+#define PJ_LIB__
+
+#include <projects.h>
+
+
+struct pj_opaque {
+ double Qn; /* Merid. quad., scaled to the projection */ \
+ double Zb; /* Radius vector in polar coord. systems */ \
+ double cgb[6]; /* Constants for Gauss -> Geo lat */ \
+ double cbg[6]; /* Constants for Geo lat -> Gauss */ \
+ double utg[6]; /* Constants for transv. merc. -> geo */ \
+ double gtu[6]; /* Constants for geo -> transv. merc. */
+};
+
+PROJ_HEAD(etmerc, "Extended Transverse Mercator")
+ "\n\tCyl, Sph\n\tlat_ts=(0)\nlat_0=(0)";
+PROJ_HEAD(utm, "Universal Transverse Mercator (UTM)")
+ "\n\tCyl, Sph\n\tzone= south";
+
+#define PROJ_ETMERC_ORDER 6
+
+
+#ifdef _GNU_SOURCE
+ inline
+#endif
+static double log1py(double x) { /* Compute log(1+x) accurately */
+ volatile double
+ y = 1 + x,
+ z = y - 1;
+ /* Here's the explanation for this magic: y = 1 + z, exactly, and z
+ * approx x, thus log(y)/z (which is nearly constant near z = 0) returns
+ * a good approximation to the true log(1 + x)/x. The multiplication x *
+ * (log(y)/z) introduces little additional error. */
+ return z == 0 ? x : x * log(y) / z;
+}
+
+
+#ifdef _GNU_SOURCE
+ inline
+#endif
+static double asinhy(double x) { /* Compute asinh(x) accurately */
+ double y = fabs(x); /* Enforce odd parity */
+ y = log1py(y * (1 + y/(hypot(1.0, y) + 1)));
+ return x < 0 ? -y : y;
+}
+
+
+#ifdef _GNU_SOURCE
+ inline
+#endif
+static double gatg(double *p1, int len_p1, double B) {
+ double *p;
+ double h = 0, h1, h2 = 0, cos_2B;
+
+ cos_2B = 2*cos(2*B);
+ for (p = p1 + len_p1, h1 = *--p; p - p1; h2 = h1, h1 = h)
+ h = -h2 + cos_2B*h1 + *--p;
+ return (B + h*sin(2*B));
+}
+
+/* Complex Clenshaw summation */
+#ifdef _GNU_SOURCE
+ inline
+#endif
+static double clenS(double *a, int size, double arg_r, double arg_i, double *R, double *I) {
+ double *p, r, i, hr, hr1, hr2, hi, hi1, hi2;
+ double sin_arg_r, cos_arg_r, sinh_arg_i, cosh_arg_i;
+
+ /* arguments */
+ p = a + size;
+#ifdef _GNU_SOURCE
+ sincos(arg_r, &sin_arg_r, &cos_arg_r);
+#else
+ sin_arg_r = sin(arg_r);
+ cos_arg_r = cos(arg_r);
+#endif
+ sinh_arg_i = sinh(arg_i);
+ cosh_arg_i = cosh(arg_i);
+ r = 2*cos_arg_r*cosh_arg_i;
+ i = -2*sin_arg_r*sinh_arg_i;
+
+ /* summation loop */
+ for (hi1 = hr1 = hi = 0, hr = *--p; a - p;) {
+ hr2 = hr1;
+ hi2 = hi1;
+ hr1 = hr;
+ hi1 = hi;
+ hr = -hr2 + r*hr1 - i*hi1 + *--p;
+ hi = -hi2 + i*hr1 + r*hi1;
+ }
+
+ r = sin_arg_r*cosh_arg_i;
+ i = cos_arg_r*sinh_arg_i;
+ *R = r*hr - i*hi;
+ *I = r*hi + i*hr;
+ return *R;
+}
+
+
+/* Real Clenshaw summation */
+static double clens(double *a, int size, double arg_r) {
+ double *p, r, hr, hr1, hr2, cos_arg_r;
+
+ p = a + size;
+ cos_arg_r = cos(arg_r);
+ r = 2*cos_arg_r;
+
+ /* summation loop */
+ for (hr1 = 0, hr = *--p; a - p;) {
+ hr2 = hr1;
+ hr1 = hr;
+ hr = -hr2 + r*hr1 + *--p;
+ }
+ return sin (arg_r)*hr;
+}
+
+
+
+static XY e_forward (LP lp, PJ *P) { /* Ellipsoidal, forward */
+ XY xy = {0.0,0.0};
+ struct pj_opaque *Q = P->opaque;
+ double sin_Cn, cos_Cn, cos_Ce, sin_Ce, dCn, dCe;
+ double Cn = lp.phi, Ce = lp.lam;
+
+ /* ell. LAT, LNG -> Gaussian LAT, LNG */
+ Cn = gatg (Q->cbg, PROJ_ETMERC_ORDER, Cn);
+ /* Gaussian LAT, LNG -> compl. sph. LAT */
+#ifdef _GNU_SOURCE
+ sincos (Cn, &sin_Cn, &cos_Cn);
+ sincos (Ce, &sin_Ce, &cos_Ce);
+#else
+ sin_Cn = sin (Cn);
+ cos_Cn = cos (Cn);
+ sin_Ce = sin (Ce);
+ cos_Ce = cos (Ce);
+#endif
+
+ Cn = atan2 (sin_Cn, cos_Ce*cos_Cn);
+ Ce = atan2 (sin_Ce*cos_Cn, hypot (sin_Cn, cos_Cn*cos_Ce));
+
+ /* compl. sph. N, E -> ell. norm. N, E */
+ Ce = asinhy ( tan (Ce) ); /* Replaces: Ce = log(tan(FORTPI + Ce*0.5)); */
+ Cn += clenS (Q->gtu, PROJ_ETMERC_ORDER, 2*Cn, 2*Ce, &dCn, &dCe);
+ Ce += dCe;
+ if (fabs (Ce) <= 2.623395162778) {
+ xy.y = Q->Qn * Cn + Q->Zb; /* Northing */
+ xy.x = Q->Qn * Ce; /* Easting */
+ } else
+ xy.x = xy.y = HUGE_VAL;
+ return xy;
+}
+
+
+
+static LP e_inverse (XY xy, PJ *P) { /* Ellipsoidal, inverse */
+ LP lp = {0.0,0.0};
+ struct pj_opaque *Q = P->opaque;
+ double sin_Cn, cos_Cn, cos_Ce, sin_Ce, dCn, dCe;
+ double Cn = xy.y, Ce = xy.x;
+
+ /* normalize N, E */
+ Cn = (Cn - Q->Zb)/Q->Qn;
+ Ce = Ce/Q->Qn;
+
+ if (fabs(Ce) <= 2.623395162778) { /* 150 degrees */
+ /* norm. N, E -> compl. sph. LAT, LNG */
+ Cn += clenS(Q->utg, PROJ_ETMERC_ORDER, 2*Cn, 2*Ce, &dCn, &dCe);
+ Ce += dCe;
+ Ce = atan (sinh (Ce)); /* Replaces: Ce = 2*(atan(exp(Ce)) - FORTPI); */
+ /* compl. sph. LAT -> Gaussian LAT, LNG */
+#ifdef _GNU_SOURCE
+ sincos (Cn, &sin_Cn, &cos_Cn);
+ sincos (Ce, &sin_Ce, &cos_Ce);
+#else
+ sin_Cn = sin (Cn);
+ cos_Cn = cos (Cn);
+ sin_Ce = sin (Ce);
+ cos_Ce = cos (Ce);
+#endif
+ Ce = atan2 (sin_Ce, cos_Ce*cos_Cn);
+ Cn = atan2 (sin_Cn*cos_Ce, hypot (sin_Ce, cos_Ce*cos_Cn));
+ /* Gaussian LAT, LNG -> ell. LAT, LNG */
+ lp.phi = gatg (Q->cgb, PROJ_ETMERC_ORDER, Cn);
+ lp.lam = Ce;
+ }
+ else
+ lp.phi = lp.lam = HUGE_VAL;
+ return lp;
+}
+
+
+
+static void *freeup_new (PJ *P) { /* Destructor */
+ if (0==P)
+ return 0;
+ if (0==P->opaque)
+ return pj_dealloc (P);
+ pj_dealloc (P->opaque);
+ return pj_dealloc(P);
+}
+
+static void freeup (PJ *P) {
+ freeup_new (P);
+ return;
+}
+
+static PJ *setup(PJ *P) { /* general initialization */
+ double f, n, np, Z;
+ struct pj_opaque *Q = P->opaque;
+
+ if (P->es <= 0)
+ E_ERROR(-34);
+
+ /* flattening */
+ f = P->es / (1 + sqrt (1 - P->es)); /* Replaces: f = 1 - sqrt(1-P->es); */
+
+ /* third flattening */
+ np = n = f/(2 - f);
+
+ /* COEF. OF TRIG SERIES GEO <-> GAUSS */
+ /* cgb := Gaussian -> Geodetic, KW p190 - 191 (61) - (62) */
+ /* cbg := Geodetic -> Gaussian, KW p186 - 187 (51) - (52) */
+ /* PROJ_ETMERC_ORDER = 6th degree : Engsager and Poder: ICC2007 */
+
+ Q->cgb[0] = n*( 2 + n*(-2/3.0 + n*(-2 + n*(116/45.0 + n*(26/45.0 +
+ n*(-2854/675.0 ))))));
+ Q->cbg[0] = n*(-2 + n*( 2/3.0 + n*( 4/3.0 + n*(-82/45.0 + n*(32/45.0 +
+ n*( 4642/4725.0))))));
+ np *= n;
+ Q->cgb[1] = np*(7/3.0 + n*( -8/5.0 + n*(-227/45.0 + n*(2704/315.0 +
+ n*( 2323/945.0)))));
+ Q->cbg[1] = np*(5/3.0 + n*(-16/15.0 + n*( -13/9.0 + n*( 904/315.0 +
+ n*(-1522/945.0)))));
+ np *= n;
+ /* n^5 coeff corrected from 1262/105 -> -1262/105 */
+ Q->cgb[2] = np*( 56/15.0 + n*(-136/35.0 + n*(-1262/105.0 +
+ n*( 73814/2835.0))));
+ Q->cbg[2] = np*(-26/15.0 + n*( 34/21.0 + n*( 8/5.0 +
+ n*(-12686/2835.0))));
+ np *= n;
+ /* n^5 coeff corrected from 322/35 -> 332/35 */
+ Q->cgb[3] = np*(4279/630.0 + n*(-332/35.0 + n*(-399572/14175.0)));
+ Q->cbg[3] = np*(1237/630.0 + n*( -12/5.0 + n*( -24832/14175.0)));
+ np *= n;
+ Q->cgb[4] = np*(4174/315.0 + n*(-144838/6237.0 ));
+ Q->cbg[4] = np*(-734/315.0 + n*( 109598/31185.0));
+ np *= n;
+ Q->cgb[5] = np*(601676/22275.0 );
+ Q->cbg[5] = np*(444337/155925.0);
+
+ /* Constants of the projections */
+ /* Transverse Mercator (UTM, ITM, etc) */
+ np = n*n;
+ /* Norm. mer. quad, K&W p.50 (96), p.19 (38b), p.5 (2) */
+ Q->Qn = P->k0/(1 + n) * (1 + np*(1/4.0 + np*(1/64.0 + np/256.0)));
+ /* coef of trig series */
+ /* utg := ell. N, E -> sph. N, E, KW p194 (65) */
+ /* gtu := sph. N, E -> ell. N, E, KW p196 (69) */
+ Q->utg[0] = n*(-0.5 + n*( 2/3.0 + n*(-37/96.0 + n*( 1/360.0 +
+ n*( 81/512.0 + n*(-96199/604800.0))))));
+ Q->gtu[0] = n*( 0.5 + n*(-2/3.0 + n*( 5/16.0 + n*(41/180.0 +
+ n*(-127/288.0 + n*( 7891/37800.0 ))))));
+ Q->utg[1] = np*(-1/48.0 + n*(-1/15.0 + n*(437/1440.0 + n*(-46/105.0 +
+ n*( 1118711/3870720.0)))));
+ Q->gtu[1] = np*(13/48.0 + n*(-3/5.0 + n*(557/1440.0 + n*(281/630.0 +
+ n*(-1983433/1935360.0)))));
+ np *= n;
+ Q->utg[2] = np*(-17/480.0 + n*( 37/840.0 + n*( 209/4480.0 +
+ n*( -5569/90720.0 ))));
+ Q->gtu[2] = np*( 61/240.0 + n*(-103/140.0 + n*(15061/26880.0 +
+ n*(167603/181440.0))));
+ np *= n;
+ Q->utg[3] = np*(-4397/161280.0 + n*( 11/504.0 + n*( 830251/7257600.0)));
+ Q->gtu[3] = np*(49561/161280.0 + n*(-179/168.0 + n*(6601661/7257600.0)));
+ np *= n;
+ Q->utg[4] = np*(-4583/161280.0 + n*( 108847/3991680.0));
+ Q->gtu[4] = np*(34729/80640.0 + n*(-3418889/1995840.0));
+ np *= n;
+ Q->utg[5] = np*(-20648693/638668800.0);
+ Q->gtu[5] = np*(212378941/319334400.0);
+
+ /* Gaussian latitude value of the origin latitude */
+ Z = gatg (Q->cbg, PROJ_ETMERC_ORDER, P->phi0);
+
+ /* Origin northing minus true northing at the origin latitude */
+ /* i.e. true northing = N - P->Zb */
+ Q->Zb = - Q->Qn*(Z + clens(Q->gtu, PROJ_ETMERC_ORDER, 2*Z));
+ P->inv = e_inverse;
+ P->fwd = e_forward;
+ return P;
+}
+
+
+
+PJ *PROJECTION(etmerc) {
+ struct pj_opaque *Q = pj_calloc (1, sizeof (struct pj_opaque));
+ if (0==Q)
+ return freeup_new (P);
+ P->opaque = Q;
+
+ P->pfree = freeup;
+ P->descr = des_etmerc;
+ return setup (P);
+}
+
+
+
+
+
+
+
+#ifdef PJ_OMIT_SELFTEST
+int pj_etmerc_selftest (void) {return 0;}
+#else
+
+int pj_etmerc_selftest (void) {
+ double tolerance_lp = 1e-10;
+ double tolerance_xy = 1e-7;
+
+ char e_args[] = {"+proj=etmerc +ellps=GRS80 +lat_1=0.5 +lat_2=2 +n=0.5 +zone=30"};
+
+ LP fwd_in[] = {
+ { 2, 1},
+ { 2,-1},
+ {-2, 1},
+ {-2,-1}
+ };
+
+ XY e_fwd_expect[] = {
+ {222650.79679758562, 110642.22941193319},
+ {222650.79679758562, -110642.22941193319},
+ {-222650.79679758562, 110642.22941193319},
+ {-222650.79679758562, -110642.22941193319},
+ };
+
+ XY inv_in[] = {
+ { 200, 100},
+ { 200,-100},
+ {-200, 100},
+ {-200,-100}
+ };
+
+ LP e_inv_expect[] = {
+ {0.0017966305681649398, 0.00090436947663183873},
+ {0.0017966305681649398, -0.00090436947663183873},
+ {-0.0017966305681649398, 0.00090436947663183873},
+ {-0.0017966305681649398, -0.00090436947663183873},
+ };
+
+ return pj_generic_selftest (e_args, 0, tolerance_xy, tolerance_lp, 4, 4, fwd_in, e_fwd_expect, 0, inv_in, e_inv_expect, 0);
+}
+#endif
+
+
+
+
+
+
+
+
+
+
+
+
+/* utm uses etmerc for the underlying projection */
+
+
+PJ *PROJECTION(utm) {
+ int zone;
+ struct pj_opaque *Q = pj_calloc (1, sizeof (struct pj_opaque));
+ if (0==Q)
+ return freeup_new (P);
+ P->opaque = Q;
+
+ P->pfree = freeup;
+ P->descr = des_utm;
+
+ if (!P->es)
+ E_ERROR(-34);
+ P->y0 = pj_param (P->ctx, P->params, "bsouth").i ? 10000000. : 0.;
+ P->x0 = 500000.;
+ if (pj_param (P->ctx, P->params, "tzone").i) /* zone input ? */
+ if ((zone = pj_param(P->ctx, P->params, "izone").i) > 0 && zone <= 60)
+ --zone;
+ else
+ E_ERROR(-35)
+ else /* nearest central meridian input */
+ if ((zone = (int)(floor ((adjlon (P->lam0) + PI) * 30. / PI))) < 0)
+ zone = 0;
+ else if (zone >= 60)
+ zone = 59;
+ P->lam0 = (zone + .5) * PI / 30. - PI;
+ P->k0 = 0.9996;
+ P->phi0 = 0.;
+
+ return setup (P);
+}
+
+
+#ifdef PJ_OMIT_SELFTEST
+int pj_utm_selftest (void) {return 0;}
+#else
+
+int pj_utm_selftest (void) {
+ double tolerance_lp = 1e-10;
+ double tolerance_xy = 1e-7;
+
+ char e_args[] = {"+proj=utm +ellps=GRS80 +lat_1=0.5 +lat_2=2 +n=0.5 +zone=30"};
+
+ LP fwd_in[] = {
+ { 2, 1},
+ { 2,-1},
+ {-2, 1},
+ {-2,-1}
+ };
+
+ XY e_fwd_expect[] = {
+ {1057002.4054912981, 110955.14117594929},
+ {1057002.4054912981, -110955.14117594929},
+ {611263.81227890507, 110547.10569680421},
+ {611263.81227890507, -110547.10569680421},
+ };
+
+ XY inv_in[] = {
+ { 200, 100},
+ { 200,-100},
+ {-200, 100},
+ {-200,-100}
+ };
+
+ LP e_inv_expect[] = {
+ {-7.4869520833902357, 0.00090193980983462605},
+ {-7.4869520833902357, -0.00090193980983462605},
+ {-7.4905356820622613, 0.00090193535121489081},
+ {-7.4905356820622613, -0.00090193535121489081},
+ };
+
+ return pj_generic_selftest (e_args, 0, tolerance_xy, tolerance_lp, 4, 4, fwd_in, e_fwd_expect, 0, inv_in, e_inv_expect, 0);
+}
+#endif
+
+
+
diff --git a/src/proj_etmerc.c b/src/proj_etmerc.c
index 3ef0903f..0149303e 100644
--- a/src/proj_etmerc.c
+++ b/src/proj_etmerc.c
@@ -35,20 +35,24 @@
*
* Modified and used here by permission of Reference Networks
* Division, Kort og Matrikelstyrelsen (KMS), Copenhagen, Denmark
+ *
*/
-#define PROJ_PARMS__ \
+
+#define PROJ_LIB__
+#define PJ_LIB__
+
+#include <projects.h>
+
+
+struct pj_opaque {
double Qn; /* Merid. quad., scaled to the projection */ \
double Zb; /* Radius vector in polar coord. systems */ \
double cgb[6]; /* Constants for Gauss -> Geo lat */ \
double cbg[6]; /* Constants for Geo lat -> Gauss */ \
double utg[6]; /* Constants for transv. merc. -> geo */ \
double gtu[6]; /* Constants for geo -> transv. merc. */
-
-#define PROJ_LIB__
-#define PJ_LIB__
-
-#include <projects.h>
+};
PROJ_HEAD(etmerc, "Extended Transverse Mercator")
"\n\tCyl, Sph\n\tlat_ts=(0)\nlat_0=(0)";
@@ -57,11 +61,11 @@ PROJ_HEAD(utm, "Universal Transverse Mercator (UTM)")
#define PROJ_ETMERC_ORDER 6
+
#ifdef _GNU_SOURCE
inline
#endif
- static double
-log1py(double x) { /* Compute log(1+x) accurately */
+static double log1py(double x) { /* Compute log(1+x) accurately */
volatile double
y = 1 + x,
z = y - 1;
@@ -72,21 +76,21 @@ log1py(double x) { /* Compute log(1+x) accurately */
return z == 0 ? x : x * log(y) / z;
}
+
#ifdef _GNU_SOURCE
inline
#endif
- static double
-asinhy(double x) { /* Compute asinh(x) accurately */
+static double asinhy(double x) { /* Compute asinh(x) accurately */
double y = fabs(x); /* Enforce odd parity */
y = log1py(y * (1 + y/(hypot(1.0, y) + 1)));
return x < 0 ? -y : y;
}
+
#ifdef _GNU_SOURCE
inline
#endif
- static double
-gatg(double *p1, int len_p1, double B) {
+static double gatg(double *p1, int len_p1, double B) {
double *p;
double h = 0, h1, h2 = 0, cos_2B;
@@ -96,11 +100,11 @@ gatg(double *p1, int len_p1, double B) {
return (B + h*sin(2*B));
}
+/* Complex Clenshaw summation */
#ifdef _GNU_SOURCE
inline
#endif
- static double
-clenS(double *a, int size, double arg_r, double arg_i, double *R, double *I) {
+static double clenS(double *a, int size, double arg_r, double arg_i, double *R, double *I) {
double *p, r, i, hr, hr1, hr2, hi, hi1, hi2;
double sin_arg_r, cos_arg_r, sinh_arg_i, cosh_arg_i;
@@ -116,6 +120,7 @@ clenS(double *a, int size, double arg_r, double arg_i, double *R, double *I) {
cosh_arg_i = cosh(arg_i);
r = 2*cos_arg_r*cosh_arg_i;
i = -2*sin_arg_r*sinh_arg_i;
+
/* summation loop */
for (hi1 = hr1 = hi = 0, hr = *--p; a - p;) {
hr2 = hr1;
@@ -125,100 +130,132 @@ clenS(double *a, int size, double arg_r, double arg_i, double *R, double *I) {
hr = -hr2 + r*hr1 - i*hi1 + *--p;
hi = -hi2 + i*hr1 + r*hi1;
}
+
r = sin_arg_r*cosh_arg_i;
i = cos_arg_r*sinh_arg_i;
*R = r*hr - i*hi;
*I = r*hi + i*hr;
- return(*R);
+ return *R;
}
- static double
-clens(double *a, int size, double arg_r) {
+
+
+/* Real Clenshaw summation */
+static double clens(double *a, int size, double arg_r) {
double *p, r, hr, hr1, hr2, cos_arg_r;
p = a + size;
cos_arg_r = cos(arg_r);
r = 2*cos_arg_r;
+
/* summation loop */
for (hr1 = 0, hr = *--p; a - p;) {
hr2 = hr1;
hr1 = hr;
hr = -hr2 + r*hr1 + *--p;
}
- return(sin(arg_r)*hr);
+ return sin (arg_r)*hr;
}
-FORWARD(e_forward); /* ellipsoid */
+
+
+static XY e_forward (LP lp, PJ *P) { /* Ellipsoidal, forward */
+ XY xy = {0.0,0.0};
+ struct pj_opaque *Q = P->opaque;
double sin_Cn, cos_Cn, cos_Ce, sin_Ce, dCn, dCe;
double Cn = lp.phi, Ce = lp.lam;
/* ell. LAT, LNG -> Gaussian LAT, LNG */
- Cn = gatg(P->cbg, PROJ_ETMERC_ORDER, Cn);
+ Cn = gatg (Q->cbg, PROJ_ETMERC_ORDER, Cn);
/* Gaussian LAT, LNG -> compl. sph. LAT */
#ifdef _GNU_SOURCE
- sincos(Cn, &sin_Cn, &cos_Cn);
- sincos(Ce, &sin_Ce, &cos_Ce);
+ sincos (Cn, &sin_Cn, &cos_Cn);
+ sincos (Ce, &sin_Ce, &cos_Ce);
#else
- sin_Cn = sin(Cn);
- cos_Cn = cos(Cn);
- sin_Ce = sin(Ce);
- cos_Ce = cos(Ce);
+ sin_Cn = sin (Cn);
+ cos_Cn = cos (Cn);
+ sin_Ce = sin (Ce);
+ cos_Ce = cos (Ce);
#endif
- Cn = atan2(sin_Cn, cos_Ce*cos_Cn);
- Ce = atan2(sin_Ce*cos_Cn, hypot(sin_Cn, cos_Cn*cos_Ce));
+ Cn = atan2 (sin_Cn, cos_Ce*cos_Cn);
+ Ce = atan2 (sin_Ce*cos_Cn, hypot (sin_Cn, cos_Cn*cos_Ce));
+
/* compl. sph. N, E -> ell. norm. N, E */
- Ce = asinhy(tan(Ce)); /* Replaces: Ce = log(tan(FORTPI + Ce*0.5)); */
- Cn += clenS(P->gtu, PROJ_ETMERC_ORDER, 2*Cn, 2*Ce, &dCn, &dCe);
+ Ce = asinhy ( tan (Ce) ); /* Replaces: Ce = log(tan(FORTPI + Ce*0.5)); */
+ Cn += clenS (Q->gtu, PROJ_ETMERC_ORDER, 2*Cn, 2*Ce, &dCn, &dCe);
Ce += dCe;
- if (fabs(Ce) <= 2.623395162778) {
- xy.y = P->Qn * Cn + P->Zb; /* Northing */
- xy.x = P->Qn * Ce; /* Easting */
+ if (fabs (Ce) <= 2.623395162778) {
+ xy.y = Q->Qn * Cn + Q->Zb; /* Northing */
+ xy.x = Q->Qn * Ce; /* Easting */
} else
xy.x = xy.y = HUGE_VAL;
- return (xy);
+ return xy;
}
-INVERSE(e_inverse); /* ellipsoid */
+
+
+static LP e_inverse (XY xy, PJ *P) { /* Ellipsoidal, inverse */
+ LP lp = {0.0,0.0};
+ struct pj_opaque *Q = P->opaque;
double sin_Cn, cos_Cn, cos_Ce, sin_Ce, dCn, dCe;
double Cn = xy.y, Ce = xy.x;
/* normalize N, E */
- Cn = (Cn - P->Zb)/P->Qn;
- Ce = Ce/P->Qn;
+ Cn = (Cn - Q->Zb)/Q->Qn;
+ Ce = Ce/Q->Qn;
+
if (fabs(Ce) <= 2.623395162778) { /* 150 degrees */
- /* norm. N, E -> compl. sph. LAT, LNG */
- Cn += clenS(P->utg, PROJ_ETMERC_ORDER, 2*Cn, 2*Ce, &dCn, &dCe);
+ /* norm. N, E -> compl. sph. LAT, LNG */
+ Cn += clenS(Q->utg, PROJ_ETMERC_ORDER, 2*Cn, 2*Ce, &dCn, &dCe);
Ce += dCe;
- Ce = atan(sinh(Ce)); /* Replaces: Ce = 2*(atan(exp(Ce)) - FORTPI); */
+ Ce = atan (sinh (Ce)); /* Replaces: Ce = 2*(atan(exp(Ce)) - FORTPI); */
/* compl. sph. LAT -> Gaussian LAT, LNG */
#ifdef _GNU_SOURCE
- sincos(Cn, &sin_Cn, &cos_Cn);
- sincos(Ce, &sin_Ce, &cos_Ce);
+ sincos (Cn, &sin_Cn, &cos_Cn);
+ sincos (Ce, &sin_Ce, &cos_Ce);
#else
- sin_Cn = sin(Cn);
- cos_Cn = cos(Cn);
- sin_Ce = sin(Ce);
- cos_Ce = cos(Ce);
+ sin_Cn = sin (Cn);
+ cos_Cn = cos (Cn);
+ sin_Ce = sin (Ce);
+ cos_Ce = cos (Ce);
#endif
- Ce = atan2(sin_Ce, cos_Ce*cos_Cn);
- Cn = atan2(sin_Cn*cos_Ce, hypot(sin_Ce, cos_Ce*cos_Cn));
+ Ce = atan2 (sin_Ce, cos_Ce*cos_Cn);
+ Cn = atan2 (sin_Cn*cos_Ce, hypot (sin_Ce, cos_Ce*cos_Cn));
/* Gaussian LAT, LNG -> ell. LAT, LNG */
- lp.phi = gatg(P->cgb, PROJ_ETMERC_ORDER, Cn);
+ lp.phi = gatg (Q->cgb, PROJ_ETMERC_ORDER, Cn);
lp.lam = Ce;
}
else
lp.phi = lp.lam = HUGE_VAL;
- return (lp);
+ return lp;
}
-FREEUP; if (P) free(P); }
- static PJ *
-setup(PJ *P) { /* general initialization */
+
+static void *freeup_new (PJ *P) { /* Destructor */
+ if (0==P)
+ return 0;
+ if (0==P->opaque)
+ return pj_dealloc (P);
+ pj_dealloc (P->opaque);
+ return pj_dealloc(P);
+}
+
+static void freeup (PJ *P) {
+ freeup_new (P);
+ return;
+}
+
+static PJ *setup(PJ *P) { /* general initialization */
double f, n, np, Z;
+ struct pj_opaque *Q = P->opaque;
+
+ if (P->es <= 0)
+ E_ERROR(-34);
+
+ /* flattening */
+ f = P->es / (1 + sqrt (1 - P->es)); /* Replaces: f = 1 - sqrt(1-P->es); */
- if (P->es <= 0) E_ERROR(-34);
- f = P->es / (1 + sqrt(1 - P->es)); /* Replaces: f = 1 - sqrt(1-P->es); */
/* third flattening */
np = n = f/(2 - f);
@@ -226,93 +263,223 @@ setup(PJ *P) { /* general initialization */
/* cgb := Gaussian -> Geodetic, KW p190 - 191 (61) - (62) */
/* cbg := Geodetic -> Gaussian, KW p186 - 187 (51) - (52) */
/* PROJ_ETMERC_ORDER = 6th degree : Engsager and Poder: ICC2007 */
- P->cgb[0] = n*( 2 + n*(-2/3.0 + n*(-2 + n*(116/45.0 + n*(26/45.0 +
+
+ Q->cgb[0] = n*( 2 + n*(-2/3.0 + n*(-2 + n*(116/45.0 + n*(26/45.0 +
n*(-2854/675.0 ))))));
- P->cbg[0] = n*(-2 + n*( 2/3.0 + n*( 4/3.0 + n*(-82/45.0 + n*(32/45.0 +
+ Q->cbg[0] = n*(-2 + n*( 2/3.0 + n*( 4/3.0 + n*(-82/45.0 + n*(32/45.0 +
n*( 4642/4725.0))))));
np *= n;
- P->cgb[1] = np*(7/3.0 + n*( -8/5.0 + n*(-227/45.0 + n*(2704/315.0 +
+ Q->cgb[1] = np*(7/3.0 + n*( -8/5.0 + n*(-227/45.0 + n*(2704/315.0 +
n*( 2323/945.0)))));
- P->cbg[1] = np*(5/3.0 + n*(-16/15.0 + n*( -13/9.0 + n*( 904/315.0 +
+ Q->cbg[1] = np*(5/3.0 + n*(-16/15.0 + n*( -13/9.0 + n*( 904/315.0 +
n*(-1522/945.0)))));
np *= n;
/* n^5 coeff corrected from 1262/105 -> -1262/105 */
- P->cgb[2] = np*( 56/15.0 + n*(-136/35.0 + n*(-1262/105.0 +
+ Q->cgb[2] = np*( 56/15.0 + n*(-136/35.0 + n*(-1262/105.0 +
n*( 73814/2835.0))));
- P->cbg[2] = np*(-26/15.0 + n*( 34/21.0 + n*( 8/5.0 +
+ Q->cbg[2] = np*(-26/15.0 + n*( 34/21.0 + n*( 8/5.0 +
n*(-12686/2835.0))));
np *= n;
/* n^5 coeff corrected from 322/35 -> 332/35 */
- P->cgb[3] = np*(4279/630.0 + n*(-332/35.0 + n*(-399572/14175.0)));
- P->cbg[3] = np*(1237/630.0 + n*( -12/5.0 + n*( -24832/14175.0)));
+ Q->cgb[3] = np*(4279/630.0 + n*(-332/35.0 + n*(-399572/14175.0)));
+ Q->cbg[3] = np*(1237/630.0 + n*( -12/5.0 + n*( -24832/14175.0)));
np *= n;
- P->cgb[4] = np*(4174/315.0 + n*(-144838/6237.0 ));
- P->cbg[4] = np*(-734/315.0 + n*( 109598/31185.0));
+ Q->cgb[4] = np*(4174/315.0 + n*(-144838/6237.0 ));
+ Q->cbg[4] = np*(-734/315.0 + n*( 109598/31185.0));
np *= n;
- P->cgb[5] = np*(601676/22275.0 );
- P->cbg[5] = np*(444337/155925.0);
+ Q->cgb[5] = np*(601676/22275.0 );
+ Q->cbg[5] = np*(444337/155925.0);
/* Constants of the projections */
/* Transverse Mercator (UTM, ITM, etc) */
np = n*n;
/* Norm. mer. quad, K&W p.50 (96), p.19 (38b), p.5 (2) */
- P->Qn = P->k0/(1 + n) * (1 + np*(1/4.0 + np*(1/64.0 + np/256.0)));
+ Q->Qn = P->k0/(1 + n) * (1 + np*(1/4.0 + np*(1/64.0 + np/256.0)));
/* coef of trig series */
/* utg := ell. N, E -> sph. N, E, KW p194 (65) */
/* gtu := sph. N, E -> ell. N, E, KW p196 (69) */
- P->utg[0] = n*(-0.5 + n*( 2/3.0 + n*(-37/96.0 + n*( 1/360.0 +
+ Q->utg[0] = n*(-0.5 + n*( 2/3.0 + n*(-37/96.0 + n*( 1/360.0 +
n*( 81/512.0 + n*(-96199/604800.0))))));
- P->gtu[0] = n*( 0.5 + n*(-2/3.0 + n*( 5/16.0 + n*(41/180.0 +
+ Q->gtu[0] = n*( 0.5 + n*(-2/3.0 + n*( 5/16.0 + n*(41/180.0 +
n*(-127/288.0 + n*( 7891/37800.0 ))))));
- P->utg[1] = np*(-1/48.0 + n*(-1/15.0 + n*(437/1440.0 + n*(-46/105.0 +
+ Q->utg[1] = np*(-1/48.0 + n*(-1/15.0 + n*(437/1440.0 + n*(-46/105.0 +
n*( 1118711/3870720.0)))));
- P->gtu[1] = np*(13/48.0 + n*(-3/5.0 + n*(557/1440.0 + n*(281/630.0 +
+ Q->gtu[1] = np*(13/48.0 + n*(-3/5.0 + n*(557/1440.0 + n*(281/630.0 +
n*(-1983433/1935360.0)))));
np *= n;
- P->utg[2] = np*(-17/480.0 + n*( 37/840.0 + n*( 209/4480.0 +
+ Q->utg[2] = np*(-17/480.0 + n*( 37/840.0 + n*( 209/4480.0 +
n*( -5569/90720.0 ))));
- P->gtu[2] = np*( 61/240.0 + n*(-103/140.0 + n*(15061/26880.0 +
+ Q->gtu[2] = np*( 61/240.0 + n*(-103/140.0 + n*(15061/26880.0 +
n*(167603/181440.0))));
np *= n;
- P->utg[3] = np*(-4397/161280.0 + n*( 11/504.0 + n*( 830251/7257600.0)));
- P->gtu[3] = np*(49561/161280.0 + n*(-179/168.0 + n*(6601661/7257600.0)));
+ Q->utg[3] = np*(-4397/161280.0 + n*( 11/504.0 + n*( 830251/7257600.0)));
+ Q->gtu[3] = np*(49561/161280.0 + n*(-179/168.0 + n*(6601661/7257600.0)));
np *= n;
- P->utg[4] = np*(-4583/161280.0 + n*( 108847/3991680.0));
- P->gtu[4] = np*(34729/80640.0 + n*(-3418889/1995840.0));
+ Q->utg[4] = np*(-4583/161280.0 + n*( 108847/3991680.0));
+ Q->gtu[4] = np*(34729/80640.0 + n*(-3418889/1995840.0));
np *= n;
- P->utg[5] = np*(-20648693/638668800.0);
- P->gtu[5] = np*(212378941/319334400.0);
+ Q->utg[5] = np*(-20648693/638668800.0);
+ Q->gtu[5] = np*(212378941/319334400.0);
+
/* Gaussian latitude value of the origin latitude */
- Z = gatg(P->cbg, PROJ_ETMERC_ORDER, P->phi0);
+ Z = gatg (Q->cbg, PROJ_ETMERC_ORDER, P->phi0);
+
/* Origin northing minus true northing at the origin latitude */
/* i.e. true northing = N - P->Zb */
- P->Zb = - P->Qn*(Z + clens(P->gtu, PROJ_ETMERC_ORDER, 2*Z));
+ Q->Zb = - Q->Qn*(Z + clens(Q->gtu, PROJ_ETMERC_ORDER, 2*Z));
P->inv = e_inverse;
P->fwd = e_forward;
return P;
}
-ENTRY0(etmerc)
-ENDENTRY(setup(P))
+
+
+PJ *PROJECTION(etmerc) {
+ struct pj_opaque *Q = pj_calloc (1, sizeof (struct pj_opaque));
+ if (0==Q)
+ return freeup_new (P);
+ P->opaque = Q;
+
+ P->pfree = freeup;
+ P->descr = des_etmerc;
+ return setup (P);
+}
+
+
+
+
+
+
+
+#ifdef PJ_OMIT_SELFTEST
+int pj_etmerc_selftest (void) {return 0;}
+#else
+
+int pj_etmerc_selftest (void) {
+ double tolerance_lp = 1e-10;
+ double tolerance_xy = 1e-7;
+
+ char e_args[] = {"+proj=etmerc +ellps=GRS80 +lat_1=0.5 +lat_2=2 +n=0.5 +zone=30"};
+
+ LP fwd_in[] = {
+ { 2, 1},
+ { 2,-1},
+ {-2, 1},
+ {-2,-1}
+ };
+
+ XY e_fwd_expect[] = {
+ {222650.79679758562, 110642.22941193319},
+ {222650.79679758562, -110642.22941193319},
+ {-222650.79679758562, 110642.22941193319},
+ {-222650.79679758562, -110642.22941193319},
+ };
+
+ XY inv_in[] = {
+ { 200, 100},
+ { 200,-100},
+ {-200, 100},
+ {-200,-100}
+ };
+
+ LP e_inv_expect[] = {
+ {0.0017966305681649398, 0.00090436947663183873},
+ {0.0017966305681649398, -0.00090436947663183873},
+ {-0.0017966305681649398, 0.00090436947663183873},
+ {-0.0017966305681649398, -0.00090436947663183873},
+ };
+
+ return pj_generic_selftest (e_args, 0, tolerance_xy, tolerance_lp, 4, 4, fwd_in, e_fwd_expect, 0, inv_in, e_inv_expect, 0);
+}
+#endif
+
+
+
+
+
+
+
+
+
+
+
/* utm uses etmerc for the underlying projection */
-ENTRY0(utm)
+
+
+PJ *PROJECTION(utm) {
int zone;
+ struct pj_opaque *Q = pj_calloc (1, sizeof (struct pj_opaque));
+ if (0==Q)
+ return freeup_new (P);
+ P->opaque = Q;
+
+ P->pfree = freeup;
+ P->descr = des_utm;
- if (!P->es) E_ERROR(-34);
- P->y0 = pj_param(P->ctx, P->params, "bsouth").i ? 10000000. : 0.;
+ if (!P->es)
+ E_ERROR(-34);
+ P->y0 = pj_param (P->ctx, P->params, "bsouth").i ? 10000000. : 0.;
P->x0 = 500000.;
- if (pj_param(P->ctx, P->params, "tzone").i) /* zone input ? */
+ if (pj_param (P->ctx, P->params, "tzone").i) /* zone input ? */
if ((zone = pj_param(P->ctx, P->params, "izone").i) > 0 && zone <= 60)
--zone;
else
E_ERROR(-35)
else /* nearest central meridian input */
- if ((zone = (int)(floor((adjlon(P->lam0) + PI) * 30. / PI))) < 0)
+ if ((zone = (int)(floor ((adjlon (P->lam0) + PI) * 30. / PI))) < 0)
zone = 0;
else if (zone >= 60)
zone = 59;
P->lam0 = (zone + .5) * PI / 30. - PI;
P->k0 = 0.9996;
P->phi0 = 0.;
-ENDENTRY(setup(P))
+
+ return setup (P);
+}
+
+
+#ifdef PJ_OMIT_SELFTEST
+int pj_utm_selftest (void) {return 0;}
+#else
+
+int pj_utm_selftest (void) {
+ double tolerance_lp = 1e-10;
+ double tolerance_xy = 1e-7;
+
+ char e_args[] = {"+proj=utm +ellps=GRS80 +lat_1=0.5 +lat_2=2 +n=0.5 +zone=30"};
+
+ LP fwd_in[] = {
+ { 2, 1},
+ { 2,-1},
+ {-2, 1},
+ {-2,-1}
+ };
+
+ XY e_fwd_expect[] = {
+ {1057002.4054912981, 110955.14117594929},
+ {1057002.4054912981, -110955.14117594929},
+ {611263.81227890507, 110547.10569680421},
+ {611263.81227890507, -110547.10569680421},
+ };
+
+ XY inv_in[] = {
+ { 200, 100},
+ { 200,-100},
+ {-200, 100},
+ {-200,-100}
+ };
+
+ LP e_inv_expect[] = {
+ {-7.4869520833902357, 0.00090193980983462605},
+ {-7.4869520833902357, -0.00090193980983462605},
+ {-7.4905356820622613, 0.00090193535121489081},
+ {-7.4905356820622613, -0.00090193535121489081},
+ };
+
+ return pj_generic_selftest (e_args, 0, tolerance_xy, tolerance_lp, 4, 4, fwd_in, e_fwd_expect, 0, inv_in, e_inv_expect, 0);
+}
+#endif
+
+
+