diff options
| author | Thomas Knudsen <lastname DOT firstname AT gmail DOT com> | 2016-05-18 23:19:49 +0200 |
|---|---|---|
| committer | Thomas Knudsen <lastname DOT firstname AT gmail DOT com> | 2016-05-18 23:19:49 +0200 |
| commit | 1b17a573ffb07e9565e0df296e2a3a21bce8e971 (patch) | |
| tree | 316289d764c2a8a5c90c0e92d543b5f28bf24171 | |
| parent | bea2cd5c821ce37d157e5c4f3b2cc9fd059fee2d (diff) | |
| download | PROJ-1b17a573ffb07e9565e0df296e2a3a21bce8e971.tar.gz PROJ-1b17a573ffb07e9565e0df296e2a3a21bce8e971.zip | |
Refactoring and adding self test for the last two projections
etmerc and utm completes the elimination of the ENTRYx style macros.
| -rw-r--r-- | src/PJ_aea.c | 25 | ||||
| -rw-r--r-- | src/PJ_etmerc.c | 484 | ||||
| -rw-r--r-- | src/proj_etmerc.c | 347 |
3 files changed, 741 insertions, 115 deletions
diff --git a/src/PJ_aea.c b/src/PJ_aea.c index 5f7c6c92..0efef484 100644 --- a/src/PJ_aea.c +++ b/src/PJ_aea.c @@ -331,28 +331,3 @@ int pj_leac_selftest (void) { return pj_generic_selftest (e_args, s_args, tolerance_xy, tolerance_lp, 4, 4, fwd_in, e_fwd_expect, s_fwd_expect, inv_in, e_inv_expect, s_inv_expect); } - - - - - - - - - - - -/*********************************************************************** - SELFTEST STUBS -************************************************************************ - -Selftest stubs temporarily placed here. - -To be removed as real selftest functions are added to the projection -source files - -***********************************************************************/ - -int pj_etmerc_selftest (void) {return 10000;} -int pj_utm_selftest (void) {return 10000;} -#endif diff --git a/src/PJ_etmerc.c b/src/PJ_etmerc.c new file mode 100644 index 00000000..d752bac9 --- /dev/null +++ b/src/PJ_etmerc.c @@ -0,0 +1,484 @@ +/* +** libproj -- library of cartographic projections +** +** Copyright (c) 2008 Gerald I. Evenden +*/ + +/* +** Permission is hereby granted, free of charge, to any person obtaining +** a copy of this software and associated documentation files (the +** "Software"), to deal in the Software without restriction, including +** without limitation the rights to use, copy, modify, merge, publish, +** distribute, sublicense, and/or sell copies of the Software, and to +** permit persons to whom the Software is furnished to do so, subject to +** the following conditions: +** +** The above copyright notice and this permission notice shall be +** included in all copies or substantial portions of the Software. +** +** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +** EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +** MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. +** IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY +** CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, +** TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE +** SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. +*/ + +/* The code in this file is largly based upon procedures: + * + * Written by: Knud Poder and Karsten Engsager + * + * Based on math from: R.Koenig and K.H. Weise, "Mathematische + * Grundlagen der hoeheren Geodaesie und Kartographie, + * Springer-Verlag, Berlin/Goettingen" Heidelberg, 1951. + * + * Modified and used here by permission of Reference Networks + * Division, Kort og Matrikelstyrelsen (KMS), Copenhagen, Denmark +*/ + + +#define PROJ_LIB__ +#define PJ_LIB__ + +#include <projects.h> + + +struct pj_opaque { + double Qn; /* Merid. quad., scaled to the projection */ \ + double Zb; /* Radius vector in polar coord. systems */ \ + double cgb[6]; /* Constants for Gauss -> Geo lat */ \ + double cbg[6]; /* Constants for Geo lat -> Gauss */ \ + double utg[6]; /* Constants for transv. merc. -> geo */ \ + double gtu[6]; /* Constants for geo -> transv. merc. */ +}; + +PROJ_HEAD(etmerc, "Extended Transverse Mercator") + "\n\tCyl, Sph\n\tlat_ts=(0)\nlat_0=(0)"; +PROJ_HEAD(utm, "Universal Transverse Mercator (UTM)") + "\n\tCyl, Sph\n\tzone= south"; + +#define PROJ_ETMERC_ORDER 6 + + +#ifdef _GNU_SOURCE + inline +#endif +static double log1py(double x) { /* Compute log(1+x) accurately */ + volatile double + y = 1 + x, + z = y - 1; + /* Here's the explanation for this magic: y = 1 + z, exactly, and z + * approx x, thus log(y)/z (which is nearly constant near z = 0) returns + * a good approximation to the true log(1 + x)/x. The multiplication x * + * (log(y)/z) introduces little additional error. */ + return z == 0 ? x : x * log(y) / z; +} + + +#ifdef _GNU_SOURCE + inline +#endif +static double asinhy(double x) { /* Compute asinh(x) accurately */ + double y = fabs(x); /* Enforce odd parity */ + y = log1py(y * (1 + y/(hypot(1.0, y) + 1))); + return x < 0 ? -y : y; +} + + +#ifdef _GNU_SOURCE + inline +#endif +static double gatg(double *p1, int len_p1, double B) { + double *p; + double h = 0, h1, h2 = 0, cos_2B; + + cos_2B = 2*cos(2*B); + for (p = p1 + len_p1, h1 = *--p; p - p1; h2 = h1, h1 = h) + h = -h2 + cos_2B*h1 + *--p; + return (B + h*sin(2*B)); +} + +/* Complex Clenshaw summation */ +#ifdef _GNU_SOURCE + inline +#endif +static double clenS(double *a, int size, double arg_r, double arg_i, double *R, double *I) { + double *p, r, i, hr, hr1, hr2, hi, hi1, hi2; + double sin_arg_r, cos_arg_r, sinh_arg_i, cosh_arg_i; + + /* arguments */ + p = a + size; +#ifdef _GNU_SOURCE + sincos(arg_r, &sin_arg_r, &cos_arg_r); +#else + sin_arg_r = sin(arg_r); + cos_arg_r = cos(arg_r); +#endif + sinh_arg_i = sinh(arg_i); + cosh_arg_i = cosh(arg_i); + r = 2*cos_arg_r*cosh_arg_i; + i = -2*sin_arg_r*sinh_arg_i; + + /* summation loop */ + for (hi1 = hr1 = hi = 0, hr = *--p; a - p;) { + hr2 = hr1; + hi2 = hi1; + hr1 = hr; + hi1 = hi; + hr = -hr2 + r*hr1 - i*hi1 + *--p; + hi = -hi2 + i*hr1 + r*hi1; + } + + r = sin_arg_r*cosh_arg_i; + i = cos_arg_r*sinh_arg_i; + *R = r*hr - i*hi; + *I = r*hi + i*hr; + return *R; +} + + +/* Real Clenshaw summation */ +static double clens(double *a, int size, double arg_r) { + double *p, r, hr, hr1, hr2, cos_arg_r; + + p = a + size; + cos_arg_r = cos(arg_r); + r = 2*cos_arg_r; + + /* summation loop */ + for (hr1 = 0, hr = *--p; a - p;) { + hr2 = hr1; + hr1 = hr; + hr = -hr2 + r*hr1 + *--p; + } + return sin (arg_r)*hr; +} + + + +static XY e_forward (LP lp, PJ *P) { /* Ellipsoidal, forward */ + XY xy = {0.0,0.0}; + struct pj_opaque *Q = P->opaque; + double sin_Cn, cos_Cn, cos_Ce, sin_Ce, dCn, dCe; + double Cn = lp.phi, Ce = lp.lam; + + /* ell. LAT, LNG -> Gaussian LAT, LNG */ + Cn = gatg (Q->cbg, PROJ_ETMERC_ORDER, Cn); + /* Gaussian LAT, LNG -> compl. sph. LAT */ +#ifdef _GNU_SOURCE + sincos (Cn, &sin_Cn, &cos_Cn); + sincos (Ce, &sin_Ce, &cos_Ce); +#else + sin_Cn = sin (Cn); + cos_Cn = cos (Cn); + sin_Ce = sin (Ce); + cos_Ce = cos (Ce); +#endif + + Cn = atan2 (sin_Cn, cos_Ce*cos_Cn); + Ce = atan2 (sin_Ce*cos_Cn, hypot (sin_Cn, cos_Cn*cos_Ce)); + + /* compl. sph. N, E -> ell. norm. N, E */ + Ce = asinhy ( tan (Ce) ); /* Replaces: Ce = log(tan(FORTPI + Ce*0.5)); */ + Cn += clenS (Q->gtu, PROJ_ETMERC_ORDER, 2*Cn, 2*Ce, &dCn, &dCe); + Ce += dCe; + if (fabs (Ce) <= 2.623395162778) { + xy.y = Q->Qn * Cn + Q->Zb; /* Northing */ + xy.x = Q->Qn * Ce; /* Easting */ + } else + xy.x = xy.y = HUGE_VAL; + return xy; +} + + + +static LP e_inverse (XY xy, PJ *P) { /* Ellipsoidal, inverse */ + LP lp = {0.0,0.0}; + struct pj_opaque *Q = P->opaque; + double sin_Cn, cos_Cn, cos_Ce, sin_Ce, dCn, dCe; + double Cn = xy.y, Ce = xy.x; + + /* normalize N, E */ + Cn = (Cn - Q->Zb)/Q->Qn; + Ce = Ce/Q->Qn; + + if (fabs(Ce) <= 2.623395162778) { /* 150 degrees */ + /* norm. N, E -> compl. sph. LAT, LNG */ + Cn += clenS(Q->utg, PROJ_ETMERC_ORDER, 2*Cn, 2*Ce, &dCn, &dCe); + Ce += dCe; + Ce = atan (sinh (Ce)); /* Replaces: Ce = 2*(atan(exp(Ce)) - FORTPI); */ + /* compl. sph. LAT -> Gaussian LAT, LNG */ +#ifdef _GNU_SOURCE + sincos (Cn, &sin_Cn, &cos_Cn); + sincos (Ce, &sin_Ce, &cos_Ce); +#else + sin_Cn = sin (Cn); + cos_Cn = cos (Cn); + sin_Ce = sin (Ce); + cos_Ce = cos (Ce); +#endif + Ce = atan2 (sin_Ce, cos_Ce*cos_Cn); + Cn = atan2 (sin_Cn*cos_Ce, hypot (sin_Ce, cos_Ce*cos_Cn)); + /* Gaussian LAT, LNG -> ell. LAT, LNG */ + lp.phi = gatg (Q->cgb, PROJ_ETMERC_ORDER, Cn); + lp.lam = Ce; + } + else + lp.phi = lp.lam = HUGE_VAL; + return lp; +} + + + +static void *freeup_new (PJ *P) { /* Destructor */ + if (0==P) + return 0; + if (0==P->opaque) + return pj_dealloc (P); + pj_dealloc (P->opaque); + return pj_dealloc(P); +} + +static void freeup (PJ *P) { + freeup_new (P); + return; +} + +static PJ *setup(PJ *P) { /* general initialization */ + double f, n, np, Z; + struct pj_opaque *Q = P->opaque; + + if (P->es <= 0) + E_ERROR(-34); + + /* flattening */ + f = P->es / (1 + sqrt (1 - P->es)); /* Replaces: f = 1 - sqrt(1-P->es); */ + + /* third flattening */ + np = n = f/(2 - f); + + /* COEF. OF TRIG SERIES GEO <-> GAUSS */ + /* cgb := Gaussian -> Geodetic, KW p190 - 191 (61) - (62) */ + /* cbg := Geodetic -> Gaussian, KW p186 - 187 (51) - (52) */ + /* PROJ_ETMERC_ORDER = 6th degree : Engsager and Poder: ICC2007 */ + + Q->cgb[0] = n*( 2 + n*(-2/3.0 + n*(-2 + n*(116/45.0 + n*(26/45.0 + + n*(-2854/675.0 )))))); + Q->cbg[0] = n*(-2 + n*( 2/3.0 + n*( 4/3.0 + n*(-82/45.0 + n*(32/45.0 + + n*( 4642/4725.0)))))); + np *= n; + Q->cgb[1] = np*(7/3.0 + n*( -8/5.0 + n*(-227/45.0 + n*(2704/315.0 + + n*( 2323/945.0))))); + Q->cbg[1] = np*(5/3.0 + n*(-16/15.0 + n*( -13/9.0 + n*( 904/315.0 + + n*(-1522/945.0))))); + np *= n; + /* n^5 coeff corrected from 1262/105 -> -1262/105 */ + Q->cgb[2] = np*( 56/15.0 + n*(-136/35.0 + n*(-1262/105.0 + + n*( 73814/2835.0)))); + Q->cbg[2] = np*(-26/15.0 + n*( 34/21.0 + n*( 8/5.0 + + n*(-12686/2835.0)))); + np *= n; + /* n^5 coeff corrected from 322/35 -> 332/35 */ + Q->cgb[3] = np*(4279/630.0 + n*(-332/35.0 + n*(-399572/14175.0))); + Q->cbg[3] = np*(1237/630.0 + n*( -12/5.0 + n*( -24832/14175.0))); + np *= n; + Q->cgb[4] = np*(4174/315.0 + n*(-144838/6237.0 )); + Q->cbg[4] = np*(-734/315.0 + n*( 109598/31185.0)); + np *= n; + Q->cgb[5] = np*(601676/22275.0 ); + Q->cbg[5] = np*(444337/155925.0); + + /* Constants of the projections */ + /* Transverse Mercator (UTM, ITM, etc) */ + np = n*n; + /* Norm. mer. quad, K&W p.50 (96), p.19 (38b), p.5 (2) */ + Q->Qn = P->k0/(1 + n) * (1 + np*(1/4.0 + np*(1/64.0 + np/256.0))); + /* coef of trig series */ + /* utg := ell. N, E -> sph. N, E, KW p194 (65) */ + /* gtu := sph. N, E -> ell. N, E, KW p196 (69) */ + Q->utg[0] = n*(-0.5 + n*( 2/3.0 + n*(-37/96.0 + n*( 1/360.0 + + n*( 81/512.0 + n*(-96199/604800.0)))))); + Q->gtu[0] = n*( 0.5 + n*(-2/3.0 + n*( 5/16.0 + n*(41/180.0 + + n*(-127/288.0 + n*( 7891/37800.0 )))))); + Q->utg[1] = np*(-1/48.0 + n*(-1/15.0 + n*(437/1440.0 + n*(-46/105.0 + + n*( 1118711/3870720.0))))); + Q->gtu[1] = np*(13/48.0 + n*(-3/5.0 + n*(557/1440.0 + n*(281/630.0 + + n*(-1983433/1935360.0))))); + np *= n; + Q->utg[2] = np*(-17/480.0 + n*( 37/840.0 + n*( 209/4480.0 + + n*( -5569/90720.0 )))); + Q->gtu[2] = np*( 61/240.0 + n*(-103/140.0 + n*(15061/26880.0 + + n*(167603/181440.0)))); + np *= n; + Q->utg[3] = np*(-4397/161280.0 + n*( 11/504.0 + n*( 830251/7257600.0))); + Q->gtu[3] = np*(49561/161280.0 + n*(-179/168.0 + n*(6601661/7257600.0))); + np *= n; + Q->utg[4] = np*(-4583/161280.0 + n*( 108847/3991680.0)); + Q->gtu[4] = np*(34729/80640.0 + n*(-3418889/1995840.0)); + np *= n; + Q->utg[5] = np*(-20648693/638668800.0); + Q->gtu[5] = np*(212378941/319334400.0); + + /* Gaussian latitude value of the origin latitude */ + Z = gatg (Q->cbg, PROJ_ETMERC_ORDER, P->phi0); + + /* Origin northing minus true northing at the origin latitude */ + /* i.e. true northing = N - P->Zb */ + Q->Zb = - Q->Qn*(Z + clens(Q->gtu, PROJ_ETMERC_ORDER, 2*Z)); + P->inv = e_inverse; + P->fwd = e_forward; + return P; +} + + + +PJ *PROJECTION(etmerc) { + struct pj_opaque *Q = pj_calloc (1, sizeof (struct pj_opaque)); + if (0==Q) + return freeup_new (P); + P->opaque = Q; + + P->pfree = freeup; + P->descr = des_etmerc; + return setup (P); +} + + + + + + + +#ifdef PJ_OMIT_SELFTEST +int pj_etmerc_selftest (void) {return 0;} +#else + +int pj_etmerc_selftest (void) { + double tolerance_lp = 1e-10; + double tolerance_xy = 1e-7; + + char e_args[] = {"+proj=etmerc +ellps=GRS80 +lat_1=0.5 +lat_2=2 +n=0.5 +zone=30"}; + + LP fwd_in[] = { + { 2, 1}, + { 2,-1}, + {-2, 1}, + {-2,-1} + }; + + XY e_fwd_expect[] = { + {222650.79679758562, 110642.22941193319}, + {222650.79679758562, -110642.22941193319}, + {-222650.79679758562, 110642.22941193319}, + {-222650.79679758562, -110642.22941193319}, + }; + + XY inv_in[] = { + { 200, 100}, + { 200,-100}, + {-200, 100}, + {-200,-100} + }; + + LP e_inv_expect[] = { + {0.0017966305681649398, 0.00090436947663183873}, + {0.0017966305681649398, -0.00090436947663183873}, + {-0.0017966305681649398, 0.00090436947663183873}, + {-0.0017966305681649398, -0.00090436947663183873}, + }; + + return pj_generic_selftest (e_args, 0, tolerance_xy, tolerance_lp, 4, 4, fwd_in, e_fwd_expect, 0, inv_in, e_inv_expect, 0); +} +#endif + + + + + + + + + + + + +/* utm uses etmerc for the underlying projection */ + + +PJ *PROJECTION(utm) { + int zone; + struct pj_opaque *Q = pj_calloc (1, sizeof (struct pj_opaque)); + if (0==Q) + return freeup_new (P); + P->opaque = Q; + + P->pfree = freeup; + P->descr = des_utm; + + if (!P->es) + E_ERROR(-34); + P->y0 = pj_param (P->ctx, P->params, "bsouth").i ? 10000000. : 0.; + P->x0 = 500000.; + if (pj_param (P->ctx, P->params, "tzone").i) /* zone input ? */ + if ((zone = pj_param(P->ctx, P->params, "izone").i) > 0 && zone <= 60) + --zone; + else + E_ERROR(-35) + else /* nearest central meridian input */ + if ((zone = (int)(floor ((adjlon (P->lam0) + PI) * 30. / PI))) < 0) + zone = 0; + else if (zone >= 60) + zone = 59; + P->lam0 = (zone + .5) * PI / 30. - PI; + P->k0 = 0.9996; + P->phi0 = 0.; + + return setup (P); +} + + +#ifdef PJ_OMIT_SELFTEST +int pj_utm_selftest (void) {return 0;} +#else + +int pj_utm_selftest (void) { + double tolerance_lp = 1e-10; + double tolerance_xy = 1e-7; + + char e_args[] = {"+proj=utm +ellps=GRS80 +lat_1=0.5 +lat_2=2 +n=0.5 +zone=30"}; + + LP fwd_in[] = { + { 2, 1}, + { 2,-1}, + {-2, 1}, + {-2,-1} + }; + + XY e_fwd_expect[] = { + {1057002.4054912981, 110955.14117594929}, + {1057002.4054912981, -110955.14117594929}, + {611263.81227890507, 110547.10569680421}, + {611263.81227890507, -110547.10569680421}, + }; + + XY inv_in[] = { + { 200, 100}, + { 200,-100}, + {-200, 100}, + {-200,-100} + }; + + LP e_inv_expect[] = { + {-7.4869520833902357, 0.00090193980983462605}, + {-7.4869520833902357, -0.00090193980983462605}, + {-7.4905356820622613, 0.00090193535121489081}, + {-7.4905356820622613, -0.00090193535121489081}, + }; + + return pj_generic_selftest (e_args, 0, tolerance_xy, tolerance_lp, 4, 4, fwd_in, e_fwd_expect, 0, inv_in, e_inv_expect, 0); +} +#endif + + + diff --git a/src/proj_etmerc.c b/src/proj_etmerc.c index 3ef0903f..0149303e 100644 --- a/src/proj_etmerc.c +++ b/src/proj_etmerc.c @@ -35,20 +35,24 @@ * * Modified and used here by permission of Reference Networks * Division, Kort og Matrikelstyrelsen (KMS), Copenhagen, Denmark + * */ -#define PROJ_PARMS__ \ + +#define PROJ_LIB__ +#define PJ_LIB__ + +#include <projects.h> + + +struct pj_opaque { double Qn; /* Merid. quad., scaled to the projection */ \ double Zb; /* Radius vector in polar coord. systems */ \ double cgb[6]; /* Constants for Gauss -> Geo lat */ \ double cbg[6]; /* Constants for Geo lat -> Gauss */ \ double utg[6]; /* Constants for transv. merc. -> geo */ \ double gtu[6]; /* Constants for geo -> transv. merc. */ - -#define PROJ_LIB__ -#define PJ_LIB__ - -#include <projects.h> +}; PROJ_HEAD(etmerc, "Extended Transverse Mercator") "\n\tCyl, Sph\n\tlat_ts=(0)\nlat_0=(0)"; @@ -57,11 +61,11 @@ PROJ_HEAD(utm, "Universal Transverse Mercator (UTM)") #define PROJ_ETMERC_ORDER 6 + #ifdef _GNU_SOURCE inline #endif - static double -log1py(double x) { /* Compute log(1+x) accurately */ +static double log1py(double x) { /* Compute log(1+x) accurately */ volatile double y = 1 + x, z = y - 1; @@ -72,21 +76,21 @@ log1py(double x) { /* Compute log(1+x) accurately */ return z == 0 ? x : x * log(y) / z; } + #ifdef _GNU_SOURCE inline #endif - static double -asinhy(double x) { /* Compute asinh(x) accurately */ +static double asinhy(double x) { /* Compute asinh(x) accurately */ double y = fabs(x); /* Enforce odd parity */ y = log1py(y * (1 + y/(hypot(1.0, y) + 1))); return x < 0 ? -y : y; } + #ifdef _GNU_SOURCE inline #endif - static double -gatg(double *p1, int len_p1, double B) { +static double gatg(double *p1, int len_p1, double B) { double *p; double h = 0, h1, h2 = 0, cos_2B; @@ -96,11 +100,11 @@ gatg(double *p1, int len_p1, double B) { return (B + h*sin(2*B)); } +/* Complex Clenshaw summation */ #ifdef _GNU_SOURCE inline #endif - static double -clenS(double *a, int size, double arg_r, double arg_i, double *R, double *I) { +static double clenS(double *a, int size, double arg_r, double arg_i, double *R, double *I) { double *p, r, i, hr, hr1, hr2, hi, hi1, hi2; double sin_arg_r, cos_arg_r, sinh_arg_i, cosh_arg_i; @@ -116,6 +120,7 @@ clenS(double *a, int size, double arg_r, double arg_i, double *R, double *I) { cosh_arg_i = cosh(arg_i); r = 2*cos_arg_r*cosh_arg_i; i = -2*sin_arg_r*sinh_arg_i; + /* summation loop */ for (hi1 = hr1 = hi = 0, hr = *--p; a - p;) { hr2 = hr1; @@ -125,100 +130,132 @@ clenS(double *a, int size, double arg_r, double arg_i, double *R, double *I) { hr = -hr2 + r*hr1 - i*hi1 + *--p; hi = -hi2 + i*hr1 + r*hi1; } + r = sin_arg_r*cosh_arg_i; i = cos_arg_r*sinh_arg_i; *R = r*hr - i*hi; *I = r*hi + i*hr; - return(*R); + return *R; } - static double -clens(double *a, int size, double arg_r) { + + +/* Real Clenshaw summation */ +static double clens(double *a, int size, double arg_r) { double *p, r, hr, hr1, hr2, cos_arg_r; p = a + size; cos_arg_r = cos(arg_r); r = 2*cos_arg_r; + /* summation loop */ for (hr1 = 0, hr = *--p; a - p;) { hr2 = hr1; hr1 = hr; hr = -hr2 + r*hr1 + *--p; } - return(sin(arg_r)*hr); + return sin (arg_r)*hr; } -FORWARD(e_forward); /* ellipsoid */ + + +static XY e_forward (LP lp, PJ *P) { /* Ellipsoidal, forward */ + XY xy = {0.0,0.0}; + struct pj_opaque *Q = P->opaque; double sin_Cn, cos_Cn, cos_Ce, sin_Ce, dCn, dCe; double Cn = lp.phi, Ce = lp.lam; /* ell. LAT, LNG -> Gaussian LAT, LNG */ - Cn = gatg(P->cbg, PROJ_ETMERC_ORDER, Cn); + Cn = gatg (Q->cbg, PROJ_ETMERC_ORDER, Cn); /* Gaussian LAT, LNG -> compl. sph. LAT */ #ifdef _GNU_SOURCE - sincos(Cn, &sin_Cn, &cos_Cn); - sincos(Ce, &sin_Ce, &cos_Ce); + sincos (Cn, &sin_Cn, &cos_Cn); + sincos (Ce, &sin_Ce, &cos_Ce); #else - sin_Cn = sin(Cn); - cos_Cn = cos(Cn); - sin_Ce = sin(Ce); - cos_Ce = cos(Ce); + sin_Cn = sin (Cn); + cos_Cn = cos (Cn); + sin_Ce = sin (Ce); + cos_Ce = cos (Ce); #endif - Cn = atan2(sin_Cn, cos_Ce*cos_Cn); - Ce = atan2(sin_Ce*cos_Cn, hypot(sin_Cn, cos_Cn*cos_Ce)); + Cn = atan2 (sin_Cn, cos_Ce*cos_Cn); + Ce = atan2 (sin_Ce*cos_Cn, hypot (sin_Cn, cos_Cn*cos_Ce)); + /* compl. sph. N, E -> ell. norm. N, E */ - Ce = asinhy(tan(Ce)); /* Replaces: Ce = log(tan(FORTPI + Ce*0.5)); */ - Cn += clenS(P->gtu, PROJ_ETMERC_ORDER, 2*Cn, 2*Ce, &dCn, &dCe); + Ce = asinhy ( tan (Ce) ); /* Replaces: Ce = log(tan(FORTPI + Ce*0.5)); */ + Cn += clenS (Q->gtu, PROJ_ETMERC_ORDER, 2*Cn, 2*Ce, &dCn, &dCe); Ce += dCe; - if (fabs(Ce) <= 2.623395162778) { - xy.y = P->Qn * Cn + P->Zb; /* Northing */ - xy.x = P->Qn * Ce; /* Easting */ + if (fabs (Ce) <= 2.623395162778) { + xy.y = Q->Qn * Cn + Q->Zb; /* Northing */ + xy.x = Q->Qn * Ce; /* Easting */ } else xy.x = xy.y = HUGE_VAL; - return (xy); + return xy; } -INVERSE(e_inverse); /* ellipsoid */ + + +static LP e_inverse (XY xy, PJ *P) { /* Ellipsoidal, inverse */ + LP lp = {0.0,0.0}; + struct pj_opaque *Q = P->opaque; double sin_Cn, cos_Cn, cos_Ce, sin_Ce, dCn, dCe; double Cn = xy.y, Ce = xy.x; /* normalize N, E */ - Cn = (Cn - P->Zb)/P->Qn; - Ce = Ce/P->Qn; + Cn = (Cn - Q->Zb)/Q->Qn; + Ce = Ce/Q->Qn; + if (fabs(Ce) <= 2.623395162778) { /* 150 degrees */ - /* norm. N, E -> compl. sph. LAT, LNG */ - Cn += clenS(P->utg, PROJ_ETMERC_ORDER, 2*Cn, 2*Ce, &dCn, &dCe); + /* norm. N, E -> compl. sph. LAT, LNG */ + Cn += clenS(Q->utg, PROJ_ETMERC_ORDER, 2*Cn, 2*Ce, &dCn, &dCe); Ce += dCe; - Ce = atan(sinh(Ce)); /* Replaces: Ce = 2*(atan(exp(Ce)) - FORTPI); */ + Ce = atan (sinh (Ce)); /* Replaces: Ce = 2*(atan(exp(Ce)) - FORTPI); */ /* compl. sph. LAT -> Gaussian LAT, LNG */ #ifdef _GNU_SOURCE - sincos(Cn, &sin_Cn, &cos_Cn); - sincos(Ce, &sin_Ce, &cos_Ce); + sincos (Cn, &sin_Cn, &cos_Cn); + sincos (Ce, &sin_Ce, &cos_Ce); #else - sin_Cn = sin(Cn); - cos_Cn = cos(Cn); - sin_Ce = sin(Ce); - cos_Ce = cos(Ce); + sin_Cn = sin (Cn); + cos_Cn = cos (Cn); + sin_Ce = sin (Ce); + cos_Ce = cos (Ce); #endif - Ce = atan2(sin_Ce, cos_Ce*cos_Cn); - Cn = atan2(sin_Cn*cos_Ce, hypot(sin_Ce, cos_Ce*cos_Cn)); + Ce = atan2 (sin_Ce, cos_Ce*cos_Cn); + Cn = atan2 (sin_Cn*cos_Ce, hypot (sin_Ce, cos_Ce*cos_Cn)); /* Gaussian LAT, LNG -> ell. LAT, LNG */ - lp.phi = gatg(P->cgb, PROJ_ETMERC_ORDER, Cn); + lp.phi = gatg (Q->cgb, PROJ_ETMERC_ORDER, Cn); lp.lam = Ce; } else lp.phi = lp.lam = HUGE_VAL; - return (lp); + return lp; } -FREEUP; if (P) free(P); } - static PJ * -setup(PJ *P) { /* general initialization */ + +static void *freeup_new (PJ *P) { /* Destructor */ + if (0==P) + return 0; + if (0==P->opaque) + return pj_dealloc (P); + pj_dealloc (P->opaque); + return pj_dealloc(P); +} + +static void freeup (PJ *P) { + freeup_new (P); + return; +} + +static PJ *setup(PJ *P) { /* general initialization */ double f, n, np, Z; + struct pj_opaque *Q = P->opaque; + + if (P->es <= 0) + E_ERROR(-34); + + /* flattening */ + f = P->es / (1 + sqrt (1 - P->es)); /* Replaces: f = 1 - sqrt(1-P->es); */ - if (P->es <= 0) E_ERROR(-34); - f = P->es / (1 + sqrt(1 - P->es)); /* Replaces: f = 1 - sqrt(1-P->es); */ /* third flattening */ np = n = f/(2 - f); @@ -226,93 +263,223 @@ setup(PJ *P) { /* general initialization */ /* cgb := Gaussian -> Geodetic, KW p190 - 191 (61) - (62) */ /* cbg := Geodetic -> Gaussian, KW p186 - 187 (51) - (52) */ /* PROJ_ETMERC_ORDER = 6th degree : Engsager and Poder: ICC2007 */ - P->cgb[0] = n*( 2 + n*(-2/3.0 + n*(-2 + n*(116/45.0 + n*(26/45.0 + + + Q->cgb[0] = n*( 2 + n*(-2/3.0 + n*(-2 + n*(116/45.0 + n*(26/45.0 + n*(-2854/675.0 )))))); - P->cbg[0] = n*(-2 + n*( 2/3.0 + n*( 4/3.0 + n*(-82/45.0 + n*(32/45.0 + + Q->cbg[0] = n*(-2 + n*( 2/3.0 + n*( 4/3.0 + n*(-82/45.0 + n*(32/45.0 + n*( 4642/4725.0)))))); np *= n; - P->cgb[1] = np*(7/3.0 + n*( -8/5.0 + n*(-227/45.0 + n*(2704/315.0 + + Q->cgb[1] = np*(7/3.0 + n*( -8/5.0 + n*(-227/45.0 + n*(2704/315.0 + n*( 2323/945.0))))); - P->cbg[1] = np*(5/3.0 + n*(-16/15.0 + n*( -13/9.0 + n*( 904/315.0 + + Q->cbg[1] = np*(5/3.0 + n*(-16/15.0 + n*( -13/9.0 + n*( 904/315.0 + n*(-1522/945.0))))); np *= n; /* n^5 coeff corrected from 1262/105 -> -1262/105 */ - P->cgb[2] = np*( 56/15.0 + n*(-136/35.0 + n*(-1262/105.0 + + Q->cgb[2] = np*( 56/15.0 + n*(-136/35.0 + n*(-1262/105.0 + n*( 73814/2835.0)))); - P->cbg[2] = np*(-26/15.0 + n*( 34/21.0 + n*( 8/5.0 + + Q->cbg[2] = np*(-26/15.0 + n*( 34/21.0 + n*( 8/5.0 + n*(-12686/2835.0)))); np *= n; /* n^5 coeff corrected from 322/35 -> 332/35 */ - P->cgb[3] = np*(4279/630.0 + n*(-332/35.0 + n*(-399572/14175.0))); - P->cbg[3] = np*(1237/630.0 + n*( -12/5.0 + n*( -24832/14175.0))); + Q->cgb[3] = np*(4279/630.0 + n*(-332/35.0 + n*(-399572/14175.0))); + Q->cbg[3] = np*(1237/630.0 + n*( -12/5.0 + n*( -24832/14175.0))); np *= n; - P->cgb[4] = np*(4174/315.0 + n*(-144838/6237.0 )); - P->cbg[4] = np*(-734/315.0 + n*( 109598/31185.0)); + Q->cgb[4] = np*(4174/315.0 + n*(-144838/6237.0 )); + Q->cbg[4] = np*(-734/315.0 + n*( 109598/31185.0)); np *= n; - P->cgb[5] = np*(601676/22275.0 ); - P->cbg[5] = np*(444337/155925.0); + Q->cgb[5] = np*(601676/22275.0 ); + Q->cbg[5] = np*(444337/155925.0); /* Constants of the projections */ /* Transverse Mercator (UTM, ITM, etc) */ np = n*n; /* Norm. mer. quad, K&W p.50 (96), p.19 (38b), p.5 (2) */ - P->Qn = P->k0/(1 + n) * (1 + np*(1/4.0 + np*(1/64.0 + np/256.0))); + Q->Qn = P->k0/(1 + n) * (1 + np*(1/4.0 + np*(1/64.0 + np/256.0))); /* coef of trig series */ /* utg := ell. N, E -> sph. N, E, KW p194 (65) */ /* gtu := sph. N, E -> ell. N, E, KW p196 (69) */ - P->utg[0] = n*(-0.5 + n*( 2/3.0 + n*(-37/96.0 + n*( 1/360.0 + + Q->utg[0] = n*(-0.5 + n*( 2/3.0 + n*(-37/96.0 + n*( 1/360.0 + n*( 81/512.0 + n*(-96199/604800.0)))))); - P->gtu[0] = n*( 0.5 + n*(-2/3.0 + n*( 5/16.0 + n*(41/180.0 + + Q->gtu[0] = n*( 0.5 + n*(-2/3.0 + n*( 5/16.0 + n*(41/180.0 + n*(-127/288.0 + n*( 7891/37800.0 )))))); - P->utg[1] = np*(-1/48.0 + n*(-1/15.0 + n*(437/1440.0 + n*(-46/105.0 + + Q->utg[1] = np*(-1/48.0 + n*(-1/15.0 + n*(437/1440.0 + n*(-46/105.0 + n*( 1118711/3870720.0))))); - P->gtu[1] = np*(13/48.0 + n*(-3/5.0 + n*(557/1440.0 + n*(281/630.0 + + Q->gtu[1] = np*(13/48.0 + n*(-3/5.0 + n*(557/1440.0 + n*(281/630.0 + n*(-1983433/1935360.0))))); np *= n; - P->utg[2] = np*(-17/480.0 + n*( 37/840.0 + n*( 209/4480.0 + + Q->utg[2] = np*(-17/480.0 + n*( 37/840.0 + n*( 209/4480.0 + n*( -5569/90720.0 )))); - P->gtu[2] = np*( 61/240.0 + n*(-103/140.0 + n*(15061/26880.0 + + Q->gtu[2] = np*( 61/240.0 + n*(-103/140.0 + n*(15061/26880.0 + n*(167603/181440.0)))); np *= n; - P->utg[3] = np*(-4397/161280.0 + n*( 11/504.0 + n*( 830251/7257600.0))); - P->gtu[3] = np*(49561/161280.0 + n*(-179/168.0 + n*(6601661/7257600.0))); + Q->utg[3] = np*(-4397/161280.0 + n*( 11/504.0 + n*( 830251/7257600.0))); + Q->gtu[3] = np*(49561/161280.0 + n*(-179/168.0 + n*(6601661/7257600.0))); np *= n; - P->utg[4] = np*(-4583/161280.0 + n*( 108847/3991680.0)); - P->gtu[4] = np*(34729/80640.0 + n*(-3418889/1995840.0)); + Q->utg[4] = np*(-4583/161280.0 + n*( 108847/3991680.0)); + Q->gtu[4] = np*(34729/80640.0 + n*(-3418889/1995840.0)); np *= n; - P->utg[5] = np*(-20648693/638668800.0); - P->gtu[5] = np*(212378941/319334400.0); + Q->utg[5] = np*(-20648693/638668800.0); + Q->gtu[5] = np*(212378941/319334400.0); + /* Gaussian latitude value of the origin latitude */ - Z = gatg(P->cbg, PROJ_ETMERC_ORDER, P->phi0); + Z = gatg (Q->cbg, PROJ_ETMERC_ORDER, P->phi0); + /* Origin northing minus true northing at the origin latitude */ /* i.e. true northing = N - P->Zb */ - P->Zb = - P->Qn*(Z + clens(P->gtu, PROJ_ETMERC_ORDER, 2*Z)); + Q->Zb = - Q->Qn*(Z + clens(Q->gtu, PROJ_ETMERC_ORDER, 2*Z)); P->inv = e_inverse; P->fwd = e_forward; return P; } -ENTRY0(etmerc) -ENDENTRY(setup(P)) + + +PJ *PROJECTION(etmerc) { + struct pj_opaque *Q = pj_calloc (1, sizeof (struct pj_opaque)); + if (0==Q) + return freeup_new (P); + P->opaque = Q; + + P->pfree = freeup; + P->descr = des_etmerc; + return setup (P); +} + + + + + + + +#ifdef PJ_OMIT_SELFTEST +int pj_etmerc_selftest (void) {return 0;} +#else + +int pj_etmerc_selftest (void) { + double tolerance_lp = 1e-10; + double tolerance_xy = 1e-7; + + char e_args[] = {"+proj=etmerc +ellps=GRS80 +lat_1=0.5 +lat_2=2 +n=0.5 +zone=30"}; + + LP fwd_in[] = { + { 2, 1}, + { 2,-1}, + {-2, 1}, + {-2,-1} + }; + + XY e_fwd_expect[] = { + {222650.79679758562, 110642.22941193319}, + {222650.79679758562, -110642.22941193319}, + {-222650.79679758562, 110642.22941193319}, + {-222650.79679758562, -110642.22941193319}, + }; + + XY inv_in[] = { + { 200, 100}, + { 200,-100}, + {-200, 100}, + {-200,-100} + }; + + LP e_inv_expect[] = { + {0.0017966305681649398, 0.00090436947663183873}, + {0.0017966305681649398, -0.00090436947663183873}, + {-0.0017966305681649398, 0.00090436947663183873}, + {-0.0017966305681649398, -0.00090436947663183873}, + }; + + return pj_generic_selftest (e_args, 0, tolerance_xy, tolerance_lp, 4, 4, fwd_in, e_fwd_expect, 0, inv_in, e_inv_expect, 0); +} +#endif + + + + + + + + + + + /* utm uses etmerc for the underlying projection */ -ENTRY0(utm) + + +PJ *PROJECTION(utm) { int zone; + struct pj_opaque *Q = pj_calloc (1, sizeof (struct pj_opaque)); + if (0==Q) + return freeup_new (P); + P->opaque = Q; + + P->pfree = freeup; + P->descr = des_utm; - if (!P->es) E_ERROR(-34); - P->y0 = pj_param(P->ctx, P->params, "bsouth").i ? 10000000. : 0.; + if (!P->es) + E_ERROR(-34); + P->y0 = pj_param (P->ctx, P->params, "bsouth").i ? 10000000. : 0.; P->x0 = 500000.; - if (pj_param(P->ctx, P->params, "tzone").i) /* zone input ? */ + if (pj_param (P->ctx, P->params, "tzone").i) /* zone input ? */ if ((zone = pj_param(P->ctx, P->params, "izone").i) > 0 && zone <= 60) --zone; else E_ERROR(-35) else /* nearest central meridian input */ - if ((zone = (int)(floor((adjlon(P->lam0) + PI) * 30. / PI))) < 0) + if ((zone = (int)(floor ((adjlon (P->lam0) + PI) * 30. / PI))) < 0) zone = 0; else if (zone >= 60) zone = 59; P->lam0 = (zone + .5) * PI / 30. - PI; P->k0 = 0.9996; P->phi0 = 0.; -ENDENTRY(setup(P)) + + return setup (P); +} + + +#ifdef PJ_OMIT_SELFTEST +int pj_utm_selftest (void) {return 0;} +#else + +int pj_utm_selftest (void) { + double tolerance_lp = 1e-10; + double tolerance_xy = 1e-7; + + char e_args[] = {"+proj=utm +ellps=GRS80 +lat_1=0.5 +lat_2=2 +n=0.5 +zone=30"}; + + LP fwd_in[] = { + { 2, 1}, + { 2,-1}, + {-2, 1}, + {-2,-1} + }; + + XY e_fwd_expect[] = { + {1057002.4054912981, 110955.14117594929}, + {1057002.4054912981, -110955.14117594929}, + {611263.81227890507, 110547.10569680421}, + {611263.81227890507, -110547.10569680421}, + }; + + XY inv_in[] = { + { 200, 100}, + { 200,-100}, + {-200, 100}, + {-200,-100} + }; + + LP e_inv_expect[] = { + {-7.4869520833902357, 0.00090193980983462605}, + {-7.4869520833902357, -0.00090193980983462605}, + {-7.4905356820622613, 0.00090193535121489081}, + {-7.4905356820622613, -0.00090193535121489081}, + }; + + return pj_generic_selftest (e_args, 0, tolerance_xy, tolerance_lp, 4, 4, fwd_in, e_fwd_expect, 0, inv_in, e_inv_expect, 0); +} +#endif + + + |
