aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorThomas Knudsen <busstoptaktik@users.noreply.github.com>2019-02-24 14:21:26 +0100
committerKristian Evers <kristianevers@gmail.com>2019-02-24 14:21:26 +0100
commit38a1525b01b45420de01b0df71befd030253ebe3 (patch)
tree69ba4ec1ea15637e8dfe749705c7a1ef13443e6c
parent49280e58edc3100359ac184d91fcea98d58fe2f7 (diff)
downloadPROJ-38a1525b01b45420de01b0df71befd030253ebe3.tar.gz
PROJ-38a1525b01b45420de01b0df71befd030253ebe3.zip
Some improvements to the docs for tmerc and omerc (#1281)
-rw-r--r--docs/source/operations/projections/omerc.rst98
-rw-r--r--docs/source/operations/projections/tmerc.rst15
-rw-r--r--docs/source/references.bib21
3 files changed, 129 insertions, 5 deletions
diff --git a/docs/source/operations/projections/omerc.rst b/docs/source/operations/projections/omerc.rst
index 7131df62..ba2edf45 100644
--- a/docs/source/operations/projections/omerc.rst
+++ b/docs/source/operations/projections/omerc.rst
@@ -4,6 +4,27 @@
Oblique Mercator
********************************************************************************
+The Oblique Mercator projection is a cylindrical map projection that closes the
+gap between the Mercator and the Transverse Mercator projections.
+
++---------------------+----------------------------------------------------------+
+| **Classification** | Conformal cylindrical |
++---------------------+----------------------------------------------------------+
+| **Available forms** | Forward and inverse, spherical and elliptical projection |
++---------------------+----------------------------------------------------------+
+| **Defined area** | Global, but reasonably accurate only within 15 degrees |
+| | of the oblique central line |
++---------------------+----------------------------------------------------------+
+| **Alias** | omerc |
++---------------------+----------------------------------------------------------+
+| **Domain** | 2D |
++---------------------+----------------------------------------------------------+
+| **Input type** | Geodetic coordinates |
++---------------------+----------------------------------------------------------+
+| **Output type** | Projected coordinates |
++---------------------+----------------------------------------------------------+
+
+
.. figure:: ./images/omerc.png
:width: 500 px
:align: center
@@ -11,6 +32,77 @@ Oblique Mercator
proj-string: ``+proj=omerc +lat_1=45 +lat_2=55``
+
+Figuratively, the cylinder used for developing the Mercator projection touches
+the planet along the Equator, while that of the Transverse Mercator touches the
+planet along a meridian, i.e. along a line perpendicular to the Equator.
+
+The cylinder for the Oblique Mercator, however, touches the planet along a line
+at an arbitrary angle with the Equator. Hence, the Oblique Mercator projection
+is useful for mapping areas having their greatest extent along a direction that
+is neither north-south, nor east-west.
+
+The Mercator and the Transverse Mercator projections are both limiting forms of
+the Oblique Mercator: The Mercator projection is equivalent to an Oblique Mercator
+with central line along the Equator, while the Transverse Mercator is equivalent
+to an Oblique Mercator with central line along a meridian.
+
+For the sphere, the construction of the Oblique Mercator projection can be
+imagined as "tilting the cylinder of a plain Mercator projection",
+so the cylinder, instead of touching the equator, touches an arbitrary great circle
+on the sphere. The great circle is defined by the tilt angle of the central line,
+hence putting land masses along that great circle near the centre of the map,
+where the Equator would go in the plain Mercator case.
+
+The ellipsoidal case, developed by Hotine, and refined by Snyder :cite:`Snyder1987`
+is more complex, involving initial steps projecting from the ellipsoid to another
+curved surface, the "aposphere", then projection from the aposphere to the skew
+uv-plane, before finally rectifying the skew uv-plane onto the map XY plane.
+
+
+Usage
+########
+
+The tilt angle (azimuth) of the central line can be given in two different ways.
+In the first case, the azimuth is given directly, using the option :option:`+alpha`
+and defining the centre of projection using the options :option:`+lonc` and
+:option:`+lat_0`.
+In the second case, the azimuth is given indirectly by specifying two points on
+the central line, using the options
+:option:`+lat_1`, :option:`+lon_1`, :option:`+lat_2`, and :option:`+lon_2`.
+
+Example: Verify that the Mercator projection is a limiting form of the Oblique
+Mercator
+
+::
+
+ $ echo 12 55 | proj +proj=merc +ellps=GRS80
+ 1335833.89 7326837.71
+
+ $ echo 12 55 | proj +proj=omerc +lonc=0 +alpha=90 +ellps=GRS80
+ 1335833.89 7326837.71
+
+Example: Second case - indirectly given azimuth
+
+::
+
+ $ echo 12 55 | proj +proj=omerc +lon_1=-1 +lat_1=1 +lon_2=0 +lat_2=0 +ellps=GRS80
+ 349567.57 6839490.50
+
+
+Example: An approximation of the Danish "System 34" from :cite:`Rittri2012`
+
+::
+
+ $ echo 10.536498003 56.229892362 | proj +proj=omerc +axis=wnu +lonc=9.46 +lat_0=56.13333333 +x_0=-266906.229 +y_0=189617.957 +k=0.9999537 +alpha=-0.76324 +gamma=0 +ellps=GRS80
+ 200000.13 199999.89
+
+The input coordinate represents the System 34 datum point "Agri Bavnehoj", with coordinates
+(200000, 200000) by definition. So at the datum point, the approximation is off by about 17 cm.
+This use case represents a datum shift from a cylinder projection on an old, slightly
+misaligned datum, to a similar projection on a modern datum.
+
+
Parameters
################################################################################
@@ -62,7 +154,11 @@ Optional
.. option:: +no_rot
- Do not rotate axis.
+ No rectification (not "no rotation" as one may well assume).
+ Do not take the last step from the skew uv-plane to the map
+ XY plane.
+
+ .. note:: This option is probably only marginally useful, but remains for (mostly) historical reasons.
.. option:: +no_off
diff --git a/docs/source/operations/projections/tmerc.rst b/docs/source/operations/projections/tmerc.rst
index fd600001..a52e4059 100644
--- a/docs/source/operations/projections/tmerc.rst
+++ b/docs/source/operations/projections/tmerc.rst
@@ -28,7 +28,7 @@ The transverse Mercator projection in its various forms is the most widely used
.. figure:: ./images/tmerc.png
:width: 500 px
:align: center
- :alt: Transverse Mercator
+ :alt: Transverse Mercator
proj-string: ``+proj=tmerc``
@@ -79,7 +79,9 @@ Parameters
.. versionadded:: 6.0.0
- Use faster, less accurate algorithm for the Transverse Mercator.
+ Use the algorithm described in section "Elliptical Form" below.
+ It is faster than the default algorithm, but also diverges faster
+ as the distance from the central meridian increases.
.. include:: ../options/lon_0.rst
@@ -98,7 +100,7 @@ Parameters
Mathematical definition
#######################
-The formulas describing the Transverse Mercator are all taken from Evenden's [Evenden2005]_.
+The formulas describing the Transverse Mercator below are quoted from Evenden's [Evenden2005]_.
:math:`\phi_0` is the latitude of origin that match the center of the map. It can be set with ``+lat_0``.
@@ -148,6 +150,11 @@ Inverse projection
Elliptical form
***************
+The formulas below describe the algorithm used when giving the
+:option:`+approx` option. They are originally from :cite:`Snyder1987`,
+but here quoted from :cite:`Evenden1995`.
+The default algorithm is given by Poder and Engsager in :cite:`Poder1998`
+
Forward projection
==================
@@ -169,7 +176,7 @@ Forward projection
.. math::
- x &= k_0 \lambda \cos \phi \\
+ x &= k_0 \lambda \cos \phi \\
&+ \frac{k_0 \lambda^3 \cos^3\phi}{3!}(1-t^2+\eta^2) \\
&+ \frac{k_0 \lambda^5 \cos^5\phi}{5!}(5-18t^2+t^4+14\eta^2-58t^2\eta^2) \\
&+\frac{k_0 \lambda^7 \cos^7\phi}{7!}(61-479t^2+179t^4-t^6)
diff --git a/docs/source/references.bib b/docs/source/references.bib
index 8a0de291..df1dc66c 100644
--- a/docs/source/references.bib
+++ b/docs/source/references.bib
@@ -215,6 +215,20 @@
Url = {https://archive.org/details/DTIC_ADA026294}
}
+@techreport{Poder1998,
+ author = {Knud Poder and Karsten Engsager},
+ year = {1998},
+ title = {Some Conformal Mappings and Transformations for Geodesy
+ and Topographic Cartography},
+ address = {Copenhagen, Denmark},
+ institution = {National Survey and Cadastre},
+ type = {National Survey and Cadastre Publications},
+ series = {4},
+ volume = {6},
+ isbn = {87-7866-085-8},
+ pages = {63}
+}
+
@Article{Patterson2015,
Title = {Introducing the Patterson Cylindrical Projection},
Author = {Tom Patterson, Bojan Šavrič, Bernhard Jenny},
@@ -225,6 +239,13 @@
Doi = {10.14714/CP78.1270}
}
+@Misc{Rittri2012,
+ author = {Mikael Rittri},
+ title = {New omerc approximations of Denmark System 34},
+ year = {2012},
+ url = {https://lists.osgeo.org/pipermail/proj/2012-June/005926.html}
+}
+
@article{Ruffhead2016,
author = {A. C. Ruffhead},
title = {Introduction to multiple regression equations in datum transformations and their reversibility},