aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorLuke Campbell <luke.campbell@gdit.com>2017-08-11 15:13:43 -0400
committerLuke Campbell <luke.campbell@gdit.com>2017-08-11 15:13:43 -0400
commit6492c4e2b421a5a7ef34be6a77cc6e9ecf930b67 (patch)
tree81ab38a91956b721d86b04b688c5b2142bd36b79
parent945e247ff1ef787630ebe21ee7b9243e151fe9bb (diff)
downloadPROJ-6492c4e2b421a5a7ef34be6a77cc6e9ecf930b67.tar.gz
PROJ-6492c4e2b421a5a7ef34be6a77cc6e9ecf930b67.zip
Uses the mathjax formatting for geodesic equations
The equations on the documentation page for geodesics were plaintext formatting and also contained a typo. This patch updates the formatting to use the sphinx supported MathJax syntax and corrects the typo.
-rw-r--r--docs/source/geodesic.rst10
1 files changed, 6 insertions, 4 deletions
diff --git a/docs/source/geodesic.rst b/docs/source/geodesic.rst
index 0f31802d..fac3649c 100644
--- a/docs/source/geodesic.rst
+++ b/docs/source/geodesic.rst
@@ -66,16 +66,18 @@ the earth. This from Mikael Rittri on the Proj mailing list:
For the fixed Earth radius, I would choose the average of the:
- c = radius of curvature at the poles,
- b^2^ / a = radius of curvature in a meridian plane at the equator,
+ :math:`c` = radius of curvature at the poles,
+
+ :math:`\frac{b^2}{a}` = radius of curvature in a meridian plane at the equator,
since these are the extreme values for the local radius of curvature of the
earth ellipsoid.
If your coordinates are given in WGS84, then
- c = 6 399 593.626 m,
- b^2^ / a = 6 335 439.327 m,
+ :math:`c` = 6 399 593.626 m,
+
+ :math:`\frac{b^2}{a}` = 6 335 439.327 m,
(see http://home.online.no/~sigurdhu/WGS84_Eng.html) so their average is 6,367,516.477 m.
The maximal error for distance calculation should then be less than 0.51 percent.