diff options
| author | Luke Campbell <luke.campbell@gdit.com> | 2017-08-11 15:13:43 -0400 |
|---|---|---|
| committer | Luke Campbell <luke.campbell@gdit.com> | 2017-08-11 15:13:43 -0400 |
| commit | 6492c4e2b421a5a7ef34be6a77cc6e9ecf930b67 (patch) | |
| tree | 81ab38a91956b721d86b04b688c5b2142bd36b79 | |
| parent | 945e247ff1ef787630ebe21ee7b9243e151fe9bb (diff) | |
| download | PROJ-6492c4e2b421a5a7ef34be6a77cc6e9ecf930b67.tar.gz PROJ-6492c4e2b421a5a7ef34be6a77cc6e9ecf930b67.zip | |
Uses the mathjax formatting for geodesic equations
The equations on the documentation page for geodesics were plaintext
formatting and also contained a typo. This patch updates the formatting
to use the sphinx supported MathJax syntax and corrects the typo.
| -rw-r--r-- | docs/source/geodesic.rst | 10 |
1 files changed, 6 insertions, 4 deletions
diff --git a/docs/source/geodesic.rst b/docs/source/geodesic.rst index 0f31802d..fac3649c 100644 --- a/docs/source/geodesic.rst +++ b/docs/source/geodesic.rst @@ -66,16 +66,18 @@ the earth. This from Mikael Rittri on the Proj mailing list: For the fixed Earth radius, I would choose the average of the: - c = radius of curvature at the poles, - b^2^ / a = radius of curvature in a meridian plane at the equator, + :math:`c` = radius of curvature at the poles, + + :math:`\frac{b^2}{a}` = radius of curvature in a meridian plane at the equator, since these are the extreme values for the local radius of curvature of the earth ellipsoid. If your coordinates are given in WGS84, then - c = 6 399 593.626 m, - b^2^ / a = 6 335 439.327 m, + :math:`c` = 6 399 593.626 m, + + :math:`\frac{b^2}{a}` = 6 335 439.327 m, (see http://home.online.no/~sigurdhu/WGS84_Eng.html) so their average is 6,367,516.477 m. The maximal error for distance calculation should then be less than 0.51 percent. |
