diff options
| author | Charles Karney <charles.karney@sri.com> | 2020-10-26 17:50:51 -0400 |
|---|---|---|
| committer | Charles Karney <charles.karney@sri.com> | 2020-10-26 17:50:51 -0400 |
| commit | ee35d15db597801a86314dc8a47da7de10c9d8f2 (patch) | |
| tree | e4d493bb317710bd0d335db24d5011ead7b8c0a7 | |
| parent | 1081e496a0fc7e45c6eb4703b0fc402bf2a9e945 (diff) | |
| download | PROJ-ee35d15db597801a86314dc8a47da7de10c9d8f2.tar.gz PROJ-ee35d15db597801a86314dc8a47da7de10c9d8f2.zip | |
phi2.cpp: Slight cosmetic changes to sinpsi2tanphi.
| -rw-r--r-- | src/phi2.cpp | 24 |
1 files changed, 15 insertions, 9 deletions
diff --git a/src/phi2.cpp b/src/phi2.cpp index c60ca055..7bbb5679 100644 --- a/src/phi2.cpp +++ b/src/phi2.cpp @@ -80,23 +80,29 @@ double pj_sinhpsi2tanphi(projCtx ctx, const double taup, const double e) { constexpr int numit = 5; // min iterations = 1, max iterations = 2; mean = 1.954 - static const double tol = sqrt(std::numeric_limits<double>::epsilon()) / 10; - static const double tmax = 2 / sqrt(std::numeric_limits<double>::epsilon()); - double + static const double + rooteps = sqrt(std::numeric_limits<double>::epsilon()), + tol = rooteps / 10, // the convergence criterion for Newton's method + tmax = 2 / rooteps; // the large arg limit is exact for tau > tmax + const double e2m = 1 - e * e, - tau = fabs(taup) > 70 ? taup * exp(e * atanh(e)) : taup / e2m, stol = tol * std::max(1.0, fabs(taup)); - if (!(fabs(tau) < tmax)) return tau; // handles +/-inf and nan and e = 1 + // The initial guess. 70 corresponds to chi = 89.18 deg (see above) + double tau = fabs(taup) > 70 ? taup * exp(e * atanh(e)) : taup / e2m; + if (!(fabs(tau) < tmax)) // handles +/-inf and nan and e = 1 + return tau; + // If we need to deal with e > 1, then we could include: // if (e2m < 0) return std::numeric_limits<double>::quiet_NaN(); int i = numit; for (; i; --i) { - double tau1 = sqrt(1 + tau * tau), + double + tau1 = sqrt(1 + tau * tau), sig = sinh( e * atanh(e * tau / tau1) ), taupa = sqrt(1 + sig * sig) * tau - sig * tau1, - dtau = (taup - taupa) * (1 + e2m * tau * tau) / - ( e2m * tau1 * sqrt(1 + taupa * taupa) ); + dtau = ( (taup - taupa) * (1 + e2m * (tau * tau)) / + (e2m * tau1 * sqrt(1 + taupa * taupa)) ); tau += dtau; - if (!(fabs(dtau) >= stol)) + if (!(fabs(dtau) >= stol)) // backwards test to allow nans to succeed. break; } if (i == 0) |
