diff options
| author | Kristian Evers <kristianevers@gmail.com> | 2017-12-06 08:14:25 +0100 |
|---|---|---|
| committer | Kristian Evers <kristianevers@gmail.com> | 2017-12-06 08:14:25 +0100 |
| commit | 43ba4112a8901278387d0c3815937f4cbb0c5b0c (patch) | |
| tree | 6ed1c9820927b990170ccb53dcc9ed684a9393e4 /docs/source | |
| parent | 597a208400377ca6285fbd204c44817e21f31907 (diff) | |
| parent | 86b96ccb8c926f831451c3e6d364319a0d833522 (diff) | |
| download | PROJ-43ba4112a8901278387d0c3815937f4cbb0c5b0c.tar.gz PROJ-43ba4112a8901278387d0c3815937f4cbb0c5b0c.zip | |
Merge remote-tracking branch 'osgeo/master' into docs-release-4.10.0
Diffstat (limited to 'docs/source')
| -rw-r--r-- | docs/source/faq.rst | 2 | ||||
| -rw-r--r-- | docs/source/geodesic.rst | 381 | ||||
| -rw-r--r-- | docs/source/references.rst | 156 | ||||
| -rw-r--r-- | docs/source/usage/apps/geod.rst | 10 |
4 files changed, 295 insertions, 254 deletions
diff --git a/docs/source/faq.rst b/docs/source/faq.rst index 48bcfafd..8afdb35d 100644 --- a/docs/source/faq.rst +++ b/docs/source/faq.rst @@ -237,7 +237,7 @@ How do I calculate distances/directions on the surface of the earth? -------------------------------------------------------------------------------- These are called geodesic calculations. There is a page about it here: -[wiki:GeodesicCalculations] +:ref:`geodesic`. What is the HEALPix projection and how can I use it? -------------------------------------------------------------------------------- diff --git a/docs/source/geodesic.rst b/docs/source/geodesic.rst index fac3649c..d54212ca 100644 --- a/docs/source/geodesic.rst +++ b/docs/source/geodesic.rst @@ -1,219 +1,174 @@ .. _geodesic: -================================================================================ -Geodesic Calculations -================================================================================ +Geodesic calculations +===================== .. contents:: Contents - :depth: 3 + :depth: 2 :backlinks: none - -Geodesic Calculations --------------------------------------------------------------------------------- - -Geodesic calculations are calculations along lines (great circle) on the -surface of the earth. They can answer questions like: - - * What is the distance between these two points? - * If I travel X meters from point A at bearing phi, where will I be. They are - done in native lat-long coordinates, rather than in projected coordinates. - -Relevant mailing list threads -................................................................................ - - * http://thread.gmane.org/gmane.comp.gis.proj-4.devel/3361 - * http://thread.gmane.org/gmane.comp.gis.proj-4.devel/3375 - * http://thread.gmane.org/gmane.comp.gis.proj-4.devel/3435 - * http://thread.gmane.org/gmane.comp.gis.proj-4.devel/3588 - * http://thread.gmane.org/gmane.comp.gis.proj-4.devel/3925 - * http://thread.gmane.org/gmane.comp.gis.proj-4.devel/4047 - * http://thread.gmane.org/gmane.comp.gis.proj-4.devel/4083 - -Terminology --------------------------------------------------------------------------------- - -The shortest distance on the surface of a solid is generally termed a geodesic, -be it an ellipsoid of revolution, aposphere, etc. On a sphere, the geodesic is -termed a Great Circle. - -HOWEVER, when computing the distance between two points using a projected -coordinate system, that is a conformal projection such as Transverse Mercator, -Oblique Mercator, Normal Mercator, Stereographic, or Lambert Conformal Conic - -that then is a GRID distance which can be converted to an equivalent GEODETIC -distance using the function for "Scale Factor at a Point." The conversion is -then termed "Grid Distance to Geodetic Distance," even though it will not be as -exactly correct as a true ellipsoidal geodesic. Closer to the truth with a TM -than with a Lambert or other conformal projection, but still not exactly "on." - - -So, it can be termed "geodetic distance" or a "geodesic distance," depending -on just how you got there ... - - -The Math --------------------------------------------------------------------------------- - -Spherical Approximation -................................................................................ - -The simplest way to compute geodesics is using a sphere as an approximation for -the earth. This from Mikael Rittri on the Proj mailing list: - - If 1 percent accuracy is enough, I think you can use spherical formulas - with a fixed Earth radius. You can find good formulas in the Aviation - Formulary of Ed Williams, http://williams.best.vwh.net/avform.htm. - - For the fixed Earth radius, I would choose the average of the: - - :math:`c` = radius of curvature at the poles, - - :math:`\frac{b^2}{a}` = radius of curvature in a meridian plane at the equator, - - since these are the extreme values for the local radius of curvature of the - earth ellipsoid. - - If your coordinates are given in WGS84, then - - :math:`c` = 6 399 593.626 m, - - :math:`\frac{b^2}{a}` = 6 335 439.327 m, - - (see http://home.online.no/~sigurdhu/WGS84_Eng.html) so their average is 6,367,516.477 m. - The maximal error for distance calculation should then be less than 0.51 percent. - - When computing the azimuth between two points by the spherical formulas, I - think the maximal error on WGS84 will be 0.2 degrees, at least if the - points are not too far away (less than 1000 km apart, say). The error - should be maximal near the equator, for azimuths near northeast etc. - -I am not sure about the spherical errors for the forward geodetic problem: -point positioning given initial point, distance and azimuth. - -Ellipsoidal Approximation -................................................................................ - -For more accuracy, the earth can be approximated with an ellipsoid, -complicating the math somewhat. See the wikipedia page, `Geodesics on an -ellipsoid <https://en.wikipedia.org/wiki/Geodesics_on_an_ellipsoid>`__, for -more information. - -Thaddeus Vincenty's method, April 1975 -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -For a very good procedure to calculate inter point distances see: - -http://www.ngs.noaa.gov/PC_PROD/Inv_Fwd/ (Fortran code, DOS executables, and an online app) - -and algorithm details published in: `Vincenty, T. (1975) <http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf>`__ - -Javascript code -^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - -Chris Veness has coded Vincenty's formulas as !JavaScript. - -distance: http://www.movable-type.co.uk/scripts/latlong-vincenty.html - -direct: http://www.movable-type.co.uk/scripts/latlong-vincenty-direct.html - -C code -^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - -From Gerald Evenden: a library of the converted NGS Vincenty geodesic procedure -and an application program, 'geodesic'. In the case of a spherical earth -[Snyder1987]_'s preferred equations are used. - -* http://article.gmane.org/gmane.comp.gis.proj-4.devel/3588/ - -The link in this message is broken. The correct URL is -http://home.comcast.net/~gevenden56/proj/ - -Earlier Mr. Evenden had posted to the PROJ.4 mailing list this code for -determination of true distance and respective forward and back azimuths between -two points on the ellipsoid. Good for any pair of points that are not -antipodal. -Later he posted that this was not in fact the translation of NGS FORTRAN code, -but something else. But, for what it's worth, here is the posted code (source -unknown): - -* http://article.gmane.org/gmane.comp.gis.proj-4.devel/3478 - - -PROJ.4 - geod program -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -The PROJ.4 [wiki:man_geod geod] program can be used for great circle distances -on an ellipsoid. As of proj version 4.9.0, this uses a translation of -GeographicLib::Geodesic (see below) into C. The underlying geodesic -calculation API is exposed as part of the PROJ.4 library (via the geodesic.h -header). Prior to version 4.9.0, the algorithm documented here was used: -` -Paul D. Thomas, 1970 -Spheroidal Geodesics, Reference Systems, and Local Geometry" -U.S. Naval Oceanographic Office, p. 162 -Engineering Library 526.3 T36s - -http://handle.dtic.mil/100.2/AD0703541 - -GeographicLib::Geodesic -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -Charles Karney has written a C++ class to do geodesic calculations and a -utility GeodSolve to call it. See - -* http://geographiclib.sourceforge.net/geod.html - -An online version of GeodSolve is available at - -* http://geographiclib.sourceforge.net/cgi-bin/GeodSolve - -This is an attempt to do geodesic calculations "right", i.e., - -* accurate to round-off (i.e., about 15 nm); -* inverse solution always succeeds (even for near anti-podal points); -* reasonably fast (comparable in speed to Vincenty); -* differential properties of geodesics are computed (these give the scales of - geodesic projections); -* the area between a geodesic and the equator is computed (allowing the - area of geodesic polygons to be found); -* included also is an implementation in terms of elliptic integrals which - can deal with ellipsoids with 0.01 < b/a < 100. - -A JavaScript implementation is included, see - -* `geo-calc <http://geographiclib.sourceforge.net/scripts/geod-calc.html>`__, - a text interface to geodesic calculations; -* `geod-google <http://geographiclib.sourceforge.net/scripts/geod-google.html>`__, - a tool for drawing geodesics on Google Maps. - -Implementations in `Python <http://pypi.python.org/pypi/geographiclib>`__, -`Matlab <http://www.mathworks.com/matlabcentral/fileexchange/39108>`__, -`C <http://geographiclib.sourceforge.net/html/C/>`__, -`Fortran <http://geographiclib.sourceforge.net/html/Fortran/>`__ , and -`Java <http://geographiclib.sourceforge.net/html/java/>`__ are also available. - -The algorithms are described in - * C. F. F. Karney, `Algorithms for gedesics <http://dx.doi.org/10.1007/s00190-012-0578-z>`__, - J. Geodesy '''87'''(1), 43-55 (2013), - DOI: `10.1007/s00190-012-0578-z <http://dx.doi.org/10.1007/s00190-012-0578-z>`__; `geo-addenda.html <http://geographiclib.sf.net/geod-addenda.html>`__. - -Triaxial Ellipsoid -................................................................................ - -A triaxial ellipsoid is a marginally better approximation to the shape of the earth -than an ellipsoid of revolution. -The problem of geodesics on a triaxial ellipsoid was solved by Jacobi in 1838. -For a discussion of this problem see -* http://geographiclib.sourceforge.net/html/triaxial.html -* the wikipedia entry: `Geodesics on a triaxial ellipsoid <https://en.wikipedia.org/wiki/Geodesics_on_an_ellipsoid#Geodesics_on_a_triaxial_ellipsoid>`__ - -The History --------------------------------------------------------------------------------- - -The bibliography of papers on the geodesic problem for an ellipsoid is -available at - -* http://geographiclib.sourceforge.net/geodesic-papers/biblio.html - -this includes links to online copies of the papers. +Introduction +------------ + +Consider a ellipsoid of revolution with equatorial radius :math:`a`, polar +semi-axis :math:`b`, and flattening :math:`f=(a−b)/a`. Points on +the surface of the ellipsoid are characterized by their latitude :math:`\phi` +and longitude :math:`\lambda`. (Note that latitude here means the +*geographical latitude*, the angle between the normal to the ellipsoid +and the equatorial plane). + +The shortest path between two points on the ellipsoid at +:math:`(\phi_1,\lambda_1)` and :math:`(\phi_2,\lambda_2)` +is called the geodesic. Its length is +:math:`s_{12}` and the geodesic from point 1 to point 2 has forward +azimuths :math:`\alpha_1` and :math:`\alpha_2` at the two end +points. In this figure, we have :math:`\lambda_{12}=\lambda_2-\lambda_1`. + + .. raw:: html + + <center> + <img src="https://upload.wikimedia.org/wikipedia/commons/thumb/c/cb/Geodesic_problem_on_an_ellipsoid.svg/320px-Geodesic_problem_on_an_ellipsoid.svg.png" + alt="Figure from wikipedia" + width="320"> + </center> + +A geodesic can be extended indefinitely by requiring that any +sufficiently small segment is a shortest path; geodesics are also the +straightest curves on the surface. + +Solution of geodesic problems +----------------------------- + +Traditionally two geodesic problems are considered: + +* the direct problem — given :math:`\phi_1`, + :math:`\lambda_1`, :math:`\alpha_1`, :math:`s_{12}`, + determine :math:`\phi_2`, :math:`\lambda_2`, :math:`\alpha_2`. + +* the inverse problem — given :math:`\phi_1`, + :math:`\lambda_1`, :math:`\phi_2`, :math:`\lambda_2`, + determine :math:`s_{12}`, :math:`\alpha_1`, + :math:`\alpha_2`. + +PROJ incorporates `C library for Geodesics +<https://geographiclib.sourceforge.io/1.49/C/>`_ from `GeographicLib +<https://geographiclib.sourceforge.io>`_. This library provides +routines to solve the direct and inverse geodesic problems. Full double +precision accuracy is maintained provided that +:math:`\lvert f\rvert<\frac1{50}`. Refer +to the + + `application programming interface + <https://geographiclib.sourceforge.io/1.49/C/geodesic_8h.html>`_ + +for full documentation. A brief summary of the routines is given in +geodesic(3). + +The interface to the geodesic routines differ in two respects from the +rest of PROJ: + +* angles (latitudes, longitudes, and azimuths) are in degrees (instead + of in radians); +* the shape of ellipsoid is specified by the flattening :math:`f`; this can + be negative to denote a prolate ellipsoid; setting :math:`f=0` corresponds + to a sphere, in which case the geodesic becomes a great circle. + +PROJ also includes a command line tool, :ref:`geod`\ (1), for performing +simple geodesic calculations. + +Additional properties +--------------------- + +The routines also calculate several other quantities of interest + +* :math:`S_{12}` is the area between the geodesic from point 1 to + point 2 and the equator; i.e., it is the area, measured + counter-clockwise, of the quadrilateral with corners + :math:`(\phi_1,\lambda_1)`, :math:`(0,\lambda_1)`, + :math:`(0,\lambda_2)`, and + :math:`(\phi_2,\lambda_2)`. It is given in + meters\ :sup:`2`. +* :math:`m_{12}`, the reduced length of the geodesic is defined such + that if the initial azimuth is perturbed by :math:`d\alpha_1` + (radians) then the second point is displaced by :math:`m_{12}\,d\alpha_1` + in the direction perpendicular to the + geodesic. :math:`m_{12}` is given in meters. On a curved surface + the reduced length obeys a symmetry relation, :math:`m_{12}+m_{21}=0`. + On a flat surface, we have :math:`m_{12}=s_{12}`. +* :math:`M_{12}` and :math:`M_{21}` are geodesic scales. If two + geodesics are parallel at point 1 and separated by a small distance + :\math`dt`, then they are separated by a distance :math:`M_{12}\,dt` at + point 2. :math:`M_{21}` is defined similarly (with the geodesics + being parallel to one another at point 2). :math:`M_{12}` and + :math:`M_{21}` are dimensionless quantities. On a flat surface, + we have :math:`M_{12}=M_{21}=1`. +* :math:`\sigma_{12}` is the arc length on the auxiliary sphere. + This is a construct for converting the problem to one in spherical + trigonometry. The spherical arc length from one equator crossing to + the next is always :math:`180^\circ`. + +If points 1, 2, and 3 lie on a single geodesic, then the following +addition rules hold: + +* :math:`s_{13}=s_{12}+s_{23}`, +* :math:`\sigma_{13}=\sigma_{12}+\sigma_{23}`, +* :math:`S_{13}=S_{12}+S_{23}`, +* :math:`m_{13}=m_{12}M_{23}+m_{23}M_{21}`, +* :math:`M_{13}=M_{12}M_{23}-(1-M_{12}M_{21})m_{23}/m_{12}`, +* :math:`M_{31}=M_{32}M_{21}-(1-M_{23}M_{32})m_{12}/m_{23}`. + +Multiple shortest geodesics +--------------------------- + +The shortest distance found by solving the inverse problem is +(obviously) uniquely defined. However, in a few special cases there are +multiple azimuths which yield the same shortest distance. Here is a +catalog of those cases: + +* :math:`\phi_1=-\phi_2` (with neither point at + a pole). If :math:`\alpha_1=\alpha_2`, the geodesic + is unique. Otherwise there are two geodesics and the second one is + obtained by setting + :math:`[\alpha_1,\alpha_2]\leftarrow[\alpha_2,\alpha_1]`, + :math:`[M_{12},M_{21}]\leftarrow[M_{21},M_{12}]`, + :math:`S_{12}\leftarrow-S_{12}`. + (This occurs when the longitude difference is near :math:`\pm180^\circ` + for oblate ellipsoids.) +* :math:`\lambda_2=\lambda_1\pm180^\circ` (with + neither point at a pole). If :math:`\alpha_1=0^\circ` or + :math:`\pm180^\circ`, the geodesic is unique. Otherwise there are two + geodesics and the second one is obtained by setting + :math:`[\alpha_1,\alpha_2]\leftarrow[-\alpha_1,-\alpha_2]`, + :math:`S_{12}\leftarrow-S_{12}`. (This occurs when + :math:`\phi_2` is near :math:`-\phi_1` for prolate + ellipsoids.) +* Points 1 and 2 at opposite poles. There are infinitely many + geodesics which can be generated by setting + :math:`[\alpha_1,\alpha_2]\leftarrow[\alpha_1,\alpha_2]+[\delta,-\delta]`, + for arbitrary :math:`\delta`. + (For spheres, this prescription applies when points 1 and 2 are + antipodal.) +* :math:`s_{12}=0` (coincident points). There are infinitely many + geodesics which can be generated by setting + :math:`[\alpha_1,\alpha_2]\leftarrow[\alpha_1,\alpha_2]+[\delta,\delta]`, + for arbitrary :math:`\delta`. + +Background +---------- + +The algorithms implemented by this package are given in [Karney2013]_ +and are based on [Bessel1825]_ and [Helmert1880]_; the algorithm for +areas is based on [Danielsen1989]_. These improve on the work of +[Vincenty1975]_ in the following respects: + +* The results are accurate to round-off for terrestrial ellipsoids (the + error in the distance is less then 15 nanometers, compared to 0.1 mm + for Vincenty). +* The solution of the inverse problem is always found. (Vincenty's + method fails to converge for nearly antipodal points.) +* The routines calculate differential and integral properties of a + geodesic. This allows, for example, the area of a geodesic polygon to + be computed. + +Additional background material is provided in [GeodesicBib]_, +[GeodesicWiki]_, and [Karney2011]_. diff --git a/docs/source/references.rst b/docs/source/references.rst index e2dece5c..ad5f16bf 100644 --- a/docs/source/references.rst +++ b/docs/source/references.rst @@ -4,37 +4,125 @@ References ================================================================================ -.. [AltamimiEtAl2002] Altamimi, Z., P. Sillard, and C. Boucher (2002), ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications, J. Geophys. Res., 107(B10), 2214, `doi:10.1029/2001JB000561 <http://www.agu.org/pubs/crossref/2002/2001JB000561.shtml>`__. - -.. [CalabrettaGreisen2002] M. Calabretta and E. Greisen, 2002, "Representations of celestial coordinates in FITS". Astronomy & Astrophysics 395, 3, 1077–1122. - -.. [ChanONeil1975] F. Chan and E.M.O'Neill, 1975, "Feasibility Study of a Quadrilateralized Spherical Cube Earth Data Base". Tech. Rep. EPRF 2-75 (CSC), Environmental Prediction Research Facility. - -.. [Deakin2004] R.E. Deakin, 2004, `The Standard and Abridged Molodensky Coordinate Transformation Formulae <http://www.mygeodesy.id.au/documents/Molodensky%20V2.pdf>`__. - -.. [EberHewitt1979] Eber, L.E., and R.P. Hewitt. 1979. `Conversion algorithms for the CALCOFI station grid <http://www.calcofi.org/publications/calcofireports/v20/Vol_20_Eber___Hewitt.pdf>`__. California Cooperative Oceanic Fisheries Investigations Reports 20:135-137. - -.. [Evenden1995] Evenden, G. I., 1995, `Cartograpic Projection Procedures for the UNIX Environment - A User's Manual <https://github.com/OSGeo/proj.4/blob/master/docs/old/proj_4_3_12.pdf>`_ - -.. [Evenden2005] Evenden, G. I., 2005, `libproj4: A Comprehensive Library of Cartographic Projection Functions (Preliminary Draft) <https://github.com/OSGeo/proj.4/blob/master/docs/old/libproj.pdf>`_ - -.. [EversKnudsen2017] K. Evers and T. Knudsen, 2017, `Transformation pipelines for PROJ.4 <http://www.fig.net/resources/proceedings/fig_proceedings/fig2017/papers/iss6b/ISS6B_evers_knudsen_9156.pdf>`__, FIG Working Week 2017 Proceedings. - -.. [LambersKolb2012] M. Lambers and A. Kolb, 2012, "Ellipsoidal Cube Maps for Accurate Rendering of Planetary-Scale Terrain Data", Proc. Pacfic Graphics (Short Papers). - -.. [ONeilLaubscher1976] E.M. O'Neill and R.E. Laubscher, 1976, "Extended Studies of a Quadrilateralized Spherical Cube Earth Data Base". Tech. Rep. NEPRF 3-76 (CSC), Naval Environmental Prediction Research Facility. - -.. [Steers1970] Steers, J.A., 1970, An introduction to the study of map projections (15th ed.): London, Univ. London Press, p. 229 - -.. [Snyder1987] Snyder. John P. 1987. `Map Projections - A Working Manual <https://github.com/OSGeo/proj.4/blob/master/docs/old/USGS-Snyder-Map-Projections-A-Working-Manual-1987.pdf>`_. US. Geological Survey professional paper; 1395. - -.. [Snyder1993] Snyder, 1993, Flattening the Earth, Chicago and London, The university of Chicago press - -.. [WeberMoore2013] Weber, E.D., and T.J. Moore. 2013. `Corrected Conversion Algorithms For The Calcofi Station Grid And Their Implementation In Several Computer Languages <http://calcofi.org/publications/calcofireports/v54/Vol_54_Weber.pdf>`__. California Cooperative Oceanic Fisheries Investigations Reports 54. - - -.. [Zajac1978] A. Zajac, 1978, "Atlas of distribution of vascular plants in Poland (ATPOL)". Taxon 27(5/6), 481–484. - -.. [Komsta2016] L. Komsta, 2016, `ATPOL geobotanical grid revisited – a proposal of coordinate conversion algorithms <http://wydawnictwo.up.lublin.pl/annales/Agricultura/2016/1/03.pdf>`__. Annales UMCS Sectio E Agricultura 71(1), 31-37. - -.. [Verey2017] M. Verey, 2017, `Theoretical analysis and practical consequences of adopting an ATPOL grid model as a conical projection, defining the conversion of plane coordinates to the WGS - 84 ellipsoid <http://www.botany.pl/atpol/Siatka%20ATPOL%20w%20analitycznym%20ujeciu.pdf>`__. Fragmenta Floristica et Geobotanica Polonica (preprint submitted). +.. [AltamimiEtAl2002] Altamimi, Z., P. Sillard, and C. Boucher (2002), + ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications, + J. Geophys. Res., 107(B10), 2214, + `doi:10.1029/2001JB000561 <http://www.agu.org/pubs/crossref/2002/2001JB000561.shtml>`__. + + +.. [Bessel1825] F. W. Bessel, 1825, + `The calculation of longitude and latitude from geodesic measurements + <https://arxiv.org/abs/0908.1824>`_, + Astron. Nachr. **331**\ (8), 852–861 (2010), + translated by C. F. F. Karney and R. E. Deakin. + +.. [CalabrettaGreisen2002] M. Calabretta and E. Greisen, 2002, + "Representations of celestial coordinates in FITS". + Astronomy & Astrophysics 395, 3, 1077–1122. + +.. [ChanONeil1975] F. Chan and E. M. O'Neill, 1975, + "Feasibility Study of a Quadrilateralized Spherical Cube Earth Data Base", + Tech. Rep. EPRF 2-75 (CSC), Environmental Prediction Research Facility. + +.. [Danielsen1989] J. Danielsen, 1989, + `The area under the geodesic + <https://doi.org/10.1179/003962689791474267>`_, + Survey Review **30**\ (232), 61–66. + +.. [Deakin2004] R.E. Deakin, 2004, + `The Standard and Abridged Molodensky Coordinate Transformation Formulae + <http://www.mygeodesy.id.au/documents/Molodensky%20V2.pdf>`__. + +.. [EberHewitt1979] L. E. Eber and R.P. Hewitt, 1979, + `Conversion algorithms for the CALCOFI station grid + <http://www.calcofi.org/publications/calcofireports/v20/Vol_20_Eber___Hewitt.pdf>`_, + California Cooperative Oceanic Fisheries Investigations Reports 20:135-137. + +.. [Evenden1995] G. I. Evenden, 1995, + `Cartograpic Projection Procedures for the UNIX Environment - + A User's Manual + <https://github.com/OSGeo/proj.4/blob/master/docs/old/proj_4_3_12.pdf>`_. + +.. [Evenden2005] G. I. Evenden, 2005, + `libproj4: A Comprehensive Library of Cartographic Projection Functions + (Preliminary Draft) + <https://github.com/OSGeo/proj.4/blob/master/docs/old/libproj.pdf>`_. + +.. [EversKnudsen2017] K. Evers and T. Knudsen, 2017, + `Transformation pipelines for PROJ.4 + <http://www.fig.net/resources/proceedings/fig_proceedings/fig2017/papers/iss6b/ISS6B_evers_knudsen_9156.pdf>`__, + FIG Working Week 2017 Proceedings. + +.. [GeodesicBib] `A geodesic bibliography + <https://geographiclib.sourceforge.io/geodesic-papers/biblio.html>`_. + +.. [GeodesicWiki] The wikipedia page, + `Geodesics on an ellipsoid + <https://en.wikipedia.org/wiki/Geodesics_on_an_ellipsoid>`_. + +.. [Helmert1880] F. R. Helmert, 1880, + `Mathematical and Physical Theories of Higher Geodesy, Vol 1 + <https://doi.org/10.5281/zenodo.32050>`_, + (Teubner, Leipzig), Chaps. 5–7. + +.. [Karney2011] C. F. F. Karney, 2011, + `Geodesics on an ellipsoid of revolution + <https://arxiv.org/abs/1102.1215v1>`_; + `errata + <https://geographiclib.sourceforge.io/geod-addenda.html#geod-errata>`_. + +.. [Karney2013] C. F. F. Karney, 2013, + `Algorithms for geodesics + <https://doi.org/10.1007/s00190-012-0578-z>`_, + J. Geodesy **87**\ (1) 43–55; + `addenda <https://geographiclib.sourceforge.io/geod-addenda.html>`_. + +.. [Komsta2016] L. Komsta, 2016, + `ATPOL geobotanical grid revisited - a proposal of coordinate conversion + algorithms + <http://wydawnictwo.up.lublin.pl/annales/Agricultura/2016/1/03.pdf>`_, + Annales UMCS Sectio E Agricultura 71(1), 31–37. + +.. [LambersKolb2012] M. Lambers and A. Kolb, 2012, + "Ellipsoidal Cube Maps for Accurate Rendering of Planetary-Scale + Terrain Data", Proc. Pacfic Graphics (Short Papers). + +.. [ONeilLaubscher1976] E. M. O'Neill and R. E. Laubscher, 1976, + "Extended Studies of a Quadrilateralized Spherical Cube Earth Data Base", + Tech. Rep. NEPRF 3-76 (CSC), + Naval Environmental Prediction Research Facility. + +.. [Snyder1987] J. P. Snyder, 1987, + `Map Projections - A Working Manual + <https://pubs.er.usgs.gov/publication/pp1395>`_. + U.S. Geological Survey professional paper 1395. + +.. [Snyder1993] J. P. Snyder, 1993, + Flattening the Earth, Chicago and London, The University of Chicago press. + +.. [Steers1970] J. A. Steers, 1970, + An introduction to the study of map projections (15th ed.), + London Univ. Press, p. 229. + +.. [Verey2017] M. Verey, 2017, + `Theoretical analysis and practical consequences of adopting an ATPOL + grid model as a conical projection, defining the conversion of plane + coordinates to the WGS-84 ellipsoid + <http://www.botany.pl/atpol/Siatka%20ATPOL%20w%20analitycznym%20ujeciu.pdf>`_, + Fragmenta Floristica et Geobotanica Polonica (preprint submitted). + +.. [Vincenty1975] T. Vincenty, 1975, + `Direct and inverse solutions of geodesics on the ellipsoid with + application of nested equations + <http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf>`_, + Survey Review **23**\ (176), 88–93. + +.. [WeberMoore2013] E. D. Weber and T.J. Moore, 2013, + `Corrected Conversion Algorithms For The Calcofi Station Grid And Their + Implementation In Several Computer Languages + <http://calcofi.org/publications/calcofireports/v54/Vol_54_Weber.pdf>`_, + California Cooperative Oceanic Fisheries Investigations Reports 54. + +.. [Zajac1978] A. Zajac, 1978, + "Atlas of distribution of vascular plants in Poland (ATPOL)", + Taxon 27(5/6), 481–484. diff --git a/docs/source/usage/apps/geod.rst b/docs/source/usage/apps/geod.rst index 7765f36a..1e009283 100644 --- a/docs/source/usage/apps/geod.rst +++ b/docs/source/usage/apps/geod.rst @@ -160,11 +160,9 @@ which gives: Further reading *************** -#. `GeographicLib <http://geographiclib.sf.net>`_ - -#. `C. F. F. Karney, Algorithms for Geodesics, J. Geodesy 87, 43-55 (2013) <http://dx.doi.org/10.1007/s00190-012-0578-z>`_. - `Addendum <http://geographiclib.sf.net/geod-addenda.html>`_ - -#. `The online geodesic bibliography <http://geographiclib.sf.net/geodesic-papers/biblio.html>`_ +#. `GeographicLib <https://geographiclib.sourceforge.io>`_. +#. C. F. F. Karney, `Algorithms for Geodesics <https://doi.org/10.1007/s00190-012-0578-z>`_, J. Geodesy **87**\ (1), 43–55 (2013); + `addenda <https://geographiclib.sourceforge.io/geod-addenda.html>`_. +#. `A geodesic bibliography <https://geographiclib.sourceforge.io/geodesic-papers/biblio.html>`_. |
