diff options
| author | Kristian Evers <kristianevers@gmail.com> | 2017-12-07 17:30:05 +0100 |
|---|---|---|
| committer | Kristian Evers <kristianevers@gmail.com> | 2017-12-07 17:30:05 +0100 |
| commit | f8d8315fd87a2ff9d210c229985bac8330962a53 (patch) | |
| tree | 1068df8feb2db8f45992569e73c42154edabdd7d /docs/source | |
| parent | 16bc13c878cfa5e2d5dbeef7de5b9546d0df02eb (diff) | |
| download | PROJ-f8d8315fd87a2ff9d210c229985bac8330962a53.tar.gz PROJ-f8d8315fd87a2ff9d210c229985bac8330962a53.zip | |
Document the helmert transform
Diffstat (limited to 'docs/source')
| -rw-r--r-- | docs/source/usage/operations/transformations/helmert.rst | 377 |
1 files changed, 366 insertions, 11 deletions
diff --git a/docs/source/usage/operations/transformations/helmert.rst b/docs/source/usage/operations/transformations/helmert.rst index 88a3facd..001d2db1 100644 --- a/docs/source/usage/operations/transformations/helmert.rst +++ b/docs/source/usage/operations/transformations/helmert.rst @@ -4,15 +4,370 @@ Helmert transform ================================================================================ -Change reference frame by Helmert shift. - -+-----------------+--------------------------------------------------------------------+ -| **Input type** | Cartesian coordinates (spatial), decimalyears (temporal). | -+-----------------+--------------------------------------------------------------------+ -| **Output type** | Cartesian coordinates (spatial), decimalyears (temporal). | -+-----------------+--------------------------------------------------------------------+ -| **Options** | -+-----------------+--------------------------------------------------------------------+ -| `+x` | -+-----------------+--------------------------------------------------------------------+ +The Helmert transformation changes coordinates from one reference frame to +anoether by means of 3-, 4-and 7-parameter shifts, or one of their 6-, 8- and +14-parameter kinematic counterparts. ++-----------------+-------------------------------------------------------------------+ +| **Input type** | Cartesian coordinates (spatial), decimalyears (temporal). | ++-----------------+-------------------------------------------------------------------+ +| **Output type** | Cartesian coordinates (spatial), decimalyears (temporal). | ++-----------------+-------------------------------------------------------------------+ +| **Options** | ++----------------+--------------------------------------------------------------------+ +| `x` | Translation of the x-axis [m]. *Optional*. | ++----------------+--------------------------------------------------------------------+ +| `y` | Translation of the y-axis [m]. *Optional*. | ++----------------+--------------------------------------------------------------------+ +| `z` | Translation of the z-axis. [m]. *Optional*. | ++----------------+--------------------------------------------------------------------+ +| `s` | Scale factor [ppm]. *Optional*. | ++----------------+--------------------------------------------------------------------+ +| `rx` | X-axis rotation in the 3D Helmert [arc seconds]. *Optional*. | ++----------------+--------------------------------------------------------------------+ +| `ry` | Y-axis rotatoin in the 3D Helmert [arc seconds]. *Optional*. | ++----------------+--------------------------------------------------------------------+ +| `rz` | Z-axis rotation in the 3D Helmert [arc seconds]. *Optional*. | ++----------------+--------------------------------------------------------------------+ +| `theta` | Rotation angle in the 2D Helmert. [arc seconds]. *Optional*. | ++----------------+--------------------------------------------------------------------+ +| `dx` | Translation rate of the x-axis. [m/year]. *Optional*. | ++----------------+--------------------------------------------------------------------+ +| `dy` | Translation rate of the y-axis. [m/year]. *Optional*. | ++----------------+--------------------------------------------------------------------+ +| `dz` | Translation rate of the z-axis. [m/year]. *Optional*. | ++----------------+--------------------------------------------------------------------+ +| `ds` | Scale rate factor [ppm/year]. *Optional*. | ++----------------+--------------------------------------------------------------------+ +| `drx` | Rotation rate of the x-axis [arc seconds/year]. *Optional*. | ++----------------+--------------------------------------------------------------------+ +| `dry` | Rotation rate of the y-axis [arc seconds/year]. *Optional*. | ++----------------+--------------------------------------------------------------------+ +| `drz` | Rotation rate of the y-axis [arc seconds/year]. *Optional*. | ++----------------+--------------------------------------------------------------------+ +| `t_epoch` | Central epoch of transformation. [decimalyear]. Only used in | +| | spatiotemporal transformations. *Optional*. | ++----------------+--------------------------------------------------------------------+ +| `t_obs` | Observation time of coordinate(s). Mostly useful in 2D and 3D | +| | transformations. [decimalyear]. *Optional*. | ++----------------+--------------------------------------------------------------------+ +| `exact` | Use exact transformation equations. *Optional*. | ++----------------+--------------------------------------------------------------------+ +| `transpose` | Transpose rotation matrix. *Optional*. | ++----------------+--------------------------------------------------------------------+ + +The Helmert transform, in all it's various incarnations, is used to perform reference +frame shifts. The transformation operates in cartesian space. It can be used to transform +planar coordinates from one datum to another (:ref:`2D Helmert`), transform 3D cartesian +coordinates from one static reference frame to another or it can be used to do fully +kinematic transformations from global reference frame to local static frames. + +All of the parameters described in the table above are marked as optional. This is true +as long as at least one parameter is defined in the setup of the transformation. +The behaviour of the transformation depends on which parameters are used in the setup. +For instance, if a rate of change paramater is specified a kinematic version of the +transformation is used. + +Examples ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ + +Transforming coordinates from NAD72 to NAD83 using the 4 parameter 2D Helmert: + +:: + + proj=helmert ellps=GRS80 x=-9597.3572 y=.6112 + s=0.304794780637 theta=-1.244048 + +Simplified transformations from ITRF2008/IGS08 to ETRS89 using 7 parameters: + +:: + + proj=helmert ellps=GRS80 x=0.67678 y=0.65495 z=-0.52827 + rx=-0.022742 ry=0.012667 rz=0.022704 s=-0.01070 + +Transformation from `ITRF2000@2017.0` to `ITRF93@2017.0` using 15 parameters: + +:: + + proj=helmert ellps=GRS80 + x=0.0127 y=0.0065 z=-0.0209 s=0.00195 + dx=-0.0029 dy=-0.0002 dz=-0.0006 ds=0.00001 + rx=-0.00039 ry=0.00080 rz=-0.00114 + drx=-0.00011 dry=-0.00019 drz=0.00007 + epoch=1988.0 tobs=2017.0 transpose + +Mathematical description ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ + +In the notation used below, :math:`\hat{P}` is the rate of change of a given transformation +parameter :math:`P`. :math:`\dot{P}` is the kinematically adjusted version of :math:`P`, +described by + +.. math:: + :label: propagation + + \dot{P}= P + \hat{P}\left(t - t_{central}\right) + +where :math:`t` is the observation time of the coordinate and :math:`t_{central}` is +the central epoch of the transformation. Equation :eq:`propagation` can be used to +propagate all transformation parameters in time. + +Superscripts of vectors denote the reference frame the coordinates in the vector belong to. + + +2D Helmert +------------------------------------------------------------------------------- + +The simplest version of the Helmert transform is the 2D case. In the 2-dimensional +case only the horizontal coordinates are changed. The coordinates can be +translated, rotated and scale. Translation is controlled with the `x` and `y` +parameters. The rotation is determined by `theta` and the scale is controlled with +the `s` paramaters. + +.. note:: + + The scaling parameter `s` is unitless for the 2D Helmert, as opposed to the + 3D version where the scaling parameter is given in units of ppm. + +Mathematically the 2D Helmert is described as: + +.. math:: + :label: 4param + + \begin{align} + \begin{bmatrix} + X \\ + Y \\ + \end{bmatrix}^B = + \begin{bmatrix} + T_x \\ + T_y \\ + \end{bmatrix} + + s + \begin{bmatrix} + \hphantom{-}\cos \theta & \sin \theta \\ + -\sin \theta & \cos \theta \\ + \end{bmatrix} + \begin{bmatrix} + X \\ + Y \\ + \end{bmatrix}^A + \end{align} + + +:eq:`4param` can be extended to a time-varying kinematic version by +adjusting the parameters with :eq:`propagation` to :eq:`4param`, which yields +the kinematic 2D Helmert transform: + +.. math:: + :label: 8param + + \begin{align} + \begin{bmatrix} + X \\ + Y \\ + \end{bmatrix}^B = + \begin{bmatrix} + \dot{T_x} \\ + \dot{T_y} \\ + \end{bmatrix} + + s(t) + \begin{bmatrix} + \hphantom{-}\cos \dot{\theta} & \sin \dot{\theta} \\ + -\sin\ \dot{\theta} & \cos \dot{\theta} \\ + \end{bmatrix} + \begin{bmatrix} + X \\ + Y \\ + \end{bmatrix}^A + \end{align} + +All parameters in :eq:`8param` are determined by the use of :eq:`propagation`, +which applies the rate of change to each individual parameter for a given +timespan between :math:`t` and :math:`t_{central}`. + + +3D Helmert +------------------------------------------------------------------------------- + +The general form of the 3D Helmert is + +.. math:: + :label: general-helmert + + + \begin{align} + V^B = T + \left(1 + s \times 10^{-6}\right) \mathbf{R} V^A + \end{align} + +Where :math:`T` is a vector consisting of the three translation parameters, :math:`s` +is the scaling factor and :math:`\mathbf{R}` is a rotation matrix. :math:`V^A` and +:math:`V^B` are coordinate vectors, with :math:`V^A` being the input coordinate and +:math:`V^B` is the output coordinate. + +The rotation matrix is composed of three rotation matrices, one for each axis: + +.. math:: + + \begin{align} + \mathbf{R}_X &= \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos\phi & -\sin\phi\\ 0 & \sin\phi & \cos\phi \end{bmatrix} + \end{align} + +.. math:: + + \begin{align} + \mathbf{R}_Y &= \begin{bmatrix} \cos\theta & 0 & \sin\theta\\ 0 & 1 & 0\\ -\sin\theta & 0 & \cos\theta \end{bmatrix} + \end{align} + +.. math:: + + \begin{align} + \mathbf{R}_Z &= \begin{bmatrix} \cos\psi & -\sin\psi & 0\\ \sin\psi & \cos\psi & 0\\ 0 & 0 & 1 \end{bmatrix} + \end{align} + +The three rotation matrices can be combined in one: + +.. math:: + + \begin{align} + \mathbf{R} = \mathbf{R_X} \mathbf{R_Y} \mathbf{R_Y} + \end{align} + +For :math:`\mathbf{R}`, this yields: + +.. math:: + :label: rot_exact + + \begin{bmatrix} + \cos\theta \cos\psi & -\cos\phi \sin\psi + \sin\phi \sin\theta \cos\psi & \sin\phi \sin\psi + \cos\phi \sin\theta \cos\psi \\ + \cos\theta\sin\psi & \cos\phi \cos\psi + \sin\phi \sin\theta \sin\psi & - \sin\phi \cos\psi + \cos\phi \sin\theta \sin\psi \\ + -\sin\theta & \sin\phi \cos\theta & \cos\phi \cos\theta \\ + \end{bmatrix} + + +Using the small angle approxition the rotation matrix can be simplified to + +.. math:: + :label: rot_approx + + \begin{align} \mathbf{R} = + \begin{bmatrix} + 1 & -R_z & R_y \\ + Rz & 1 & -R_x \\ + -Ry & R_x & 1 \\ + \end{bmatrix} + \end{align} + +Which allow us to express the most common version of the Helmert transform, +using the approximated rotation matrix: + + +.. math:: + :label: 7param + + \begin{align} + \begin{bmatrix} + X \\ + Y \\ + Z \\ + \end{bmatrix}^B = + \begin{bmatrix} + T_x \\ + T_y \\ + T_z \\ + \end{bmatrix} + + \left(1 + s \times 10^{-6}\right) + \begin{bmatrix} + 1 & -R_z & R_y \\ + Rz & 1 & -R_x \\ + -Ry & R_x & 1 \\ + \end{bmatrix} + \begin{bmatrix} + X \\ + Y \\ + Z \\ + \end{bmatrix}^A + \end{align} + +Applying :eq:`propagation` we get the kinematic version of the approximated +3D Helmert: + +.. math:: + :label: 14param + + \begin{align} + \begin{bmatrix} + X \\ + Y \\ + Z \\ + \end{bmatrix}^B = + \begin{bmatrix} + \dot{T_x} \\ + \dot{T_y} \\ + \dot{T_z} \\ + \end{bmatrix} + + \left(1 + \dot{s} \times 10^{-6}\right) + \begin{bmatrix} + 1 & -\dot{R_z} & \dot{R_y} \\ + \dot{R_z} & 1 & -\dot{R_x} \\ + -\dot{R_y} & \dot{R_x} & 1 \\ + \end{bmatrix} + \begin{bmatrix} + X \\ + Y \\ + Z \\ + \end{bmatrix}^A + \end{align} + + + + +The Helmert transformation can be applied without using the rotation parameters, +in which case it becomes a simlpe translation of the origin of the coordinate +system. When using the Helmert in this version equation :eq:`general-helmert` +simplies to: + +.. math:: + :label: 3param + + \begin{align} + \begin{bmatrix} + X \\ + Y \\ + Z \\ + \end{bmatrix}^B = + \begin{bmatrix} + T_x \\ + T_y \\ + T_z \\ + \end{bmatrix} + + \begin{bmatrix} + X \\ + Y \\ + Z \\ + \end{bmatrix}^A + \end{align} + +That after application of :eq:`propagation` has the following kinematic +countpart: + +.. math:: + :label: 6param + + \begin{align} + \begin{bmatrix} + X \\ + Y \\ + Z \\ + \end{bmatrix}^B = + \begin{bmatrix} + \dot{T_x} \\ + \dot{T_y} \\ + \dot{T_z} \\ + \end{bmatrix} + + \begin{bmatrix} + X \\ + Y \\ + Z \\ + \end{bmatrix}^A + \end{align} |
