aboutsummaryrefslogtreecommitdiff
path: root/src/geocent.cpp
diff options
context:
space:
mode:
authorEven Rouault <even.rouault@spatialys.com>2018-12-18 20:24:11 +0100
committerEven Rouault <even.rouault@spatialys.com>2018-12-26 10:08:53 +0100
commit610957f7035242f15743c399ffd429b92bc36206 (patch)
tree73f0d51147e2f4860c4bfc875f7a4bf9359386d4 /src/geocent.cpp
parent355d681ed88019e97742344bd642c2fd97e700a1 (diff)
downloadPROJ-610957f7035242f15743c399ffd429b92bc36206.tar.gz
PROJ-610957f7035242f15743c399ffd429b92bc36206.zip
cpp conversion: minimal steps to fix compilation errors, not warnings
Diffstat (limited to 'src/geocent.cpp')
-rw-r--r--src/geocent.cpp436
1 files changed, 436 insertions, 0 deletions
diff --git a/src/geocent.cpp b/src/geocent.cpp
new file mode 100644
index 00000000..c023bdd3
--- /dev/null
+++ b/src/geocent.cpp
@@ -0,0 +1,436 @@
+/***************************************************************************/
+/* RSC IDENTIFIER: GEOCENTRIC
+ *
+ * ABSTRACT
+ *
+ * This component provides conversions between Geodetic coordinates (latitude,
+ * longitude in radians and height in meters) and Geocentric coordinates
+ * (X, Y, Z) in meters.
+ *
+ * ERROR HANDLING
+ *
+ * This component checks parameters for valid values. If an invalid value
+ * is found, the error code is combined with the current error code using
+ * the bitwise or. This combining allows multiple error codes to be
+ * returned. The possible error codes are:
+ *
+ * GEOCENT_NO_ERROR : No errors occurred in function
+ * GEOCENT_LAT_ERROR : Latitude out of valid range
+ * (-90 to 90 degrees)
+ * GEOCENT_LON_ERROR : Longitude out of valid range
+ * (-180 to 360 degrees)
+ * GEOCENT_A_ERROR : Semi-major axis lessthan or equal to zero
+ * GEOCENT_B_ERROR : Semi-minor axis lessthan or equal to zero
+ * GEOCENT_A_LESS_B_ERROR : Semi-major axis less than semi-minor axis
+ *
+ *
+ * REUSE NOTES
+ *
+ * GEOCENTRIC is intended for reuse by any application that performs
+ * coordinate conversions between geodetic coordinates and geocentric
+ * coordinates.
+ *
+ *
+ * REFERENCES
+ *
+ * An Improved Algorithm for Geocentric to Geodetic Coordinate Conversion,
+ * Ralph Toms, February 1996 UCRL-JC-123138.
+ *
+ * Further information on GEOCENTRIC can be found in the Reuse Manual.
+ *
+ * GEOCENTRIC originated from : U.S. Army Topographic Engineering Center
+ * Geospatial Information Division
+ * 7701 Telegraph Road
+ * Alexandria, VA 22310-3864
+ *
+ * LICENSES
+ *
+ * None apply to this component.
+ *
+ * RESTRICTIONS
+ *
+ * GEOCENTRIC has no restrictions.
+ *
+ * ENVIRONMENT
+ *
+ * GEOCENTRIC was tested and certified in the following environments:
+ *
+ * 1. Solaris 2.5 with GCC version 2.8.1
+ * 2. Windows 95 with MS Visual C++ version 6
+ *
+ * MODIFICATIONS
+ *
+ * Date Description
+ * ---- -----------
+ * 25-02-97 Original Code
+ *
+ */
+
+
+/***************************************************************************/
+/*
+ * INCLUDES
+ */
+#include <math.h>
+#include "geocent.h"
+/*
+ * math.h - is needed for calls to sin, cos, tan and sqrt.
+ * geocent.h - is needed for Error codes and prototype error checking.
+ */
+
+
+/***************************************************************************/
+/*
+ * DEFINES
+ */
+#define PI 3.14159265358979323e0
+#define PI_OVER_2 (PI / 2.0e0)
+#define FALSE 0
+#define TRUE 1
+#define COS_67P5 0.38268343236508977 /* cosine of 67.5 degrees */
+#define AD_C 1.0026000 /* Toms region 1 constant */
+
+
+/***************************************************************************/
+/*
+ * FUNCTIONS
+ */
+
+
+long pj_Set_Geocentric_Parameters (GeocentricInfo *gi, double a, double b)
+
+{ /* BEGIN Set_Geocentric_Parameters */
+/*
+ * The function Set_Geocentric_Parameters receives the ellipsoid parameters
+ * as inputs and sets the corresponding state variables.
+ *
+ * a : Semi-major axis, in meters. (input)
+ * b : Semi-minor axis, in meters. (input)
+ */
+ long Error_Code = GEOCENT_NO_ERROR;
+
+ if (a <= 0.0)
+ Error_Code |= GEOCENT_A_ERROR;
+ if (b <= 0.0)
+ Error_Code |= GEOCENT_B_ERROR;
+ if (a < b)
+ Error_Code |= GEOCENT_A_LESS_B_ERROR;
+ if (!Error_Code)
+ {
+ gi->Geocent_a = a;
+ gi->Geocent_b = b;
+ gi->Geocent_a2 = a * a;
+ gi->Geocent_b2 = b * b;
+ gi->Geocent_e2 = (gi->Geocent_a2 - gi->Geocent_b2) / gi->Geocent_a2;
+ gi->Geocent_ep2 = (gi->Geocent_a2 - gi->Geocent_b2) / gi->Geocent_b2;
+ }
+ return (Error_Code);
+} /* END OF Set_Geocentric_Parameters */
+
+
+void pj_Get_Geocentric_Parameters (GeocentricInfo *gi,
+ double *a,
+ double *b)
+{ /* BEGIN Get_Geocentric_Parameters */
+/*
+ * The function Get_Geocentric_Parameters returns the ellipsoid parameters
+ * to be used in geocentric coordinate conversions.
+ *
+ * a : Semi-major axis, in meters. (output)
+ * b : Semi-minor axis, in meters. (output)
+ */
+
+ *a = gi->Geocent_a;
+ *b = gi->Geocent_b;
+} /* END OF Get_Geocentric_Parameters */
+
+
+long pj_Convert_Geodetic_To_Geocentric (GeocentricInfo *gi,
+ double Latitude,
+ double Longitude,
+ double Height,
+ double *X,
+ double *Y,
+ double *Z)
+{ /* BEGIN Convert_Geodetic_To_Geocentric */
+/*
+ * The function Convert_Geodetic_To_Geocentric converts geodetic coordinates
+ * (latitude, longitude, and height) to geocentric coordinates (X, Y, Z),
+ * according to the current ellipsoid parameters.
+ *
+ * Latitude : Geodetic latitude in radians (input)
+ * Longitude : Geodetic longitude in radians (input)
+ * Height : Geodetic height, in meters (input)
+ * X : Calculated Geocentric X coordinate, in meters (output)
+ * Y : Calculated Geocentric Y coordinate, in meters (output)
+ * Z : Calculated Geocentric Z coordinate, in meters (output)
+ *
+ */
+ long Error_Code = GEOCENT_NO_ERROR;
+ double Rn; /* Earth radius at location */
+ double Sin_Lat; /* sin(Latitude) */
+ double Sin2_Lat; /* Square of sin(Latitude) */
+ double Cos_Lat; /* cos(Latitude) */
+
+ /*
+ ** Don't blow up if Latitude is just a little out of the value
+ ** range as it may just be a rounding issue. Also removed longitude
+ ** test, it should be wrapped by cos() and sin(). NFW for PROJ.4, Sep/2001.
+ */
+ if( Latitude < -PI_OVER_2 && Latitude > -1.001 * PI_OVER_2 )
+ Latitude = -PI_OVER_2;
+ else if( Latitude > PI_OVER_2 && Latitude < 1.001 * PI_OVER_2 )
+ Latitude = PI_OVER_2;
+ else if ((Latitude < -PI_OVER_2) || (Latitude > PI_OVER_2))
+ { /* Latitude out of range */
+ Error_Code |= GEOCENT_LAT_ERROR;
+ }
+
+ if (!Error_Code)
+ { /* no errors */
+ if (Longitude > PI)
+ Longitude -= (2*PI);
+ Sin_Lat = sin(Latitude);
+ Cos_Lat = cos(Latitude);
+ Sin2_Lat = Sin_Lat * Sin_Lat;
+ Rn = gi->Geocent_a / (sqrt(1.0e0 - gi->Geocent_e2 * Sin2_Lat));
+ *X = (Rn + Height) * Cos_Lat * cos(Longitude);
+ *Y = (Rn + Height) * Cos_Lat * sin(Longitude);
+ *Z = ((Rn * (1 - gi->Geocent_e2)) + Height) * Sin_Lat;
+
+ }
+ return (Error_Code);
+} /* END OF Convert_Geodetic_To_Geocentric */
+
+/*
+ * The function Convert_Geocentric_To_Geodetic converts geocentric
+ * coordinates (X, Y, Z) to geodetic coordinates (latitude, longitude,
+ * and height), according to the current ellipsoid parameters.
+ *
+ * X : Geocentric X coordinate, in meters. (input)
+ * Y : Geocentric Y coordinate, in meters. (input)
+ * Z : Geocentric Z coordinate, in meters. (input)
+ * Latitude : Calculated latitude value in radians. (output)
+ * Longitude : Calculated longitude value in radians. (output)
+ * Height : Calculated height value, in meters. (output)
+ */
+
+#define USE_ITERATIVE_METHOD
+
+void pj_Convert_Geocentric_To_Geodetic (GeocentricInfo *gi,
+ double X,
+ double Y,
+ double Z,
+ double *Latitude,
+ double *Longitude,
+ double *Height)
+{ /* BEGIN Convert_Geocentric_To_Geodetic */
+#if !defined(USE_ITERATIVE_METHOD)
+/*
+ * The method used here is derived from 'An Improved Algorithm for
+ * Geocentric to Geodetic Coordinate Conversion', by Ralph Toms, Feb 1996
+ */
+
+/* Note: Variable names follow the notation used in Toms, Feb 1996 */
+
+ double W; /* distance from Z axis */
+ double W2; /* square of distance from Z axis */
+ double T0; /* initial estimate of vertical component */
+ double T1; /* corrected estimate of vertical component */
+ double S0; /* initial estimate of horizontal component */
+ double S1; /* corrected estimate of horizontal component */
+ double Sin_B0; /* sin(B0), B0 is estimate of Bowring aux variable */
+ double Sin3_B0; /* cube of sin(B0) */
+ double Cos_B0; /* cos(B0) */
+ double Sin_p1; /* sin(phi1), phi1 is estimated latitude */
+ double Cos_p1; /* cos(phi1) */
+ double Rn; /* Earth radius at location */
+ double Sum; /* numerator of cos(phi1) */
+ int At_Pole; /* indicates location is in polar region */
+
+ At_Pole = FALSE;
+ if (X != 0.0)
+ {
+ *Longitude = atan2(Y,X);
+ }
+ else
+ {
+ if (Y > 0)
+ {
+ *Longitude = PI_OVER_2;
+ }
+ else if (Y < 0)
+ {
+ *Longitude = -PI_OVER_2;
+ }
+ else
+ {
+ At_Pole = TRUE;
+ *Longitude = 0.0;
+ if (Z > 0.0)
+ { /* north pole */
+ *Latitude = PI_OVER_2;
+ }
+ else if (Z < 0.0)
+ { /* south pole */
+ *Latitude = -PI_OVER_2;
+ }
+ else
+ { /* center of earth */
+ *Latitude = PI_OVER_2;
+ *Height = -Geocent_b;
+ return;
+ }
+ }
+ }
+ W2 = X*X + Y*Y;
+ W = sqrt(W2);
+ T0 = Z * AD_C;
+ S0 = sqrt(T0 * T0 + W2);
+ Sin_B0 = T0 / S0;
+ Cos_B0 = W / S0;
+ Sin3_B0 = Sin_B0 * Sin_B0 * Sin_B0;
+ T1 = Z + gi->Geocent_b * gi->Geocent_ep2 * Sin3_B0;
+ Sum = W - gi->Geocent_a * gi->Geocent_e2 * Cos_B0 * Cos_B0 * Cos_B0;
+ S1 = sqrt(T1*T1 + Sum * Sum);
+ Sin_p1 = T1 / S1;
+ Cos_p1 = Sum / S1;
+ Rn = gi->Geocent_a / sqrt(1.0 - gi->Geocent_e2 * Sin_p1 * Sin_p1);
+ if (Cos_p1 >= COS_67P5)
+ {
+ *Height = W / Cos_p1 - Rn;
+ }
+ else if (Cos_p1 <= -COS_67P5)
+ {
+ *Height = W / -Cos_p1 - Rn;
+ }
+ else
+ {
+ *Height = Z / Sin_p1 + Rn * (gi->Geocent_e2 - 1.0);
+ }
+ if (At_Pole == FALSE)
+ {
+ *Latitude = atan(Sin_p1 / Cos_p1);
+ }
+#else /* defined(USE_ITERATIVE_METHOD) */
+/*
+* Reference...
+* ============
+* Wenzel, H.-G.(1985): Hochauflösende Kugelfunktionsmodelle für
+* das Gravitationspotential der Erde. Wiss. Arb. Univ. Hannover
+* Nr. 137, p. 130-131.
+
+* Programmed by GGA- Leibniz-Institute of Applied Geophysics
+* Stilleweg 2
+* D-30655 Hannover
+* Federal Republic of Germany
+* Internet: www.gga-hannover.de
+*
+* Hannover, March 1999, April 2004.
+* see also: comments in statements
+* remarks:
+* Mathematically exact and because of symmetry of rotation-ellipsoid,
+* each point (X,Y,Z) has at least two solutions (Latitude1,Longitude1,Height1) and
+* (Latitude2,Longitude2,Height2). Is point=(0.,0.,Z) (P=0.), so you get even
+* four solutions, every two symmetrical to the semi-minor axis.
+* Here Height1 and Height2 have at least a difference in order of
+* radius of curvature (e.g. (0,0,b)=> (90.,0.,0.) or (-90.,0.,-2b);
+* (a+100.)*(sqrt(2.)/2.,sqrt(2.)/2.,0.) => (0.,45.,100.) or
+* (0.,225.,-(2a+100.))).
+* The algorithm always computes (Latitude,Longitude) with smallest |Height|.
+* For normal computations, that means |Height|<10000.m, algorithm normally
+* converges after to 2-3 steps!!!
+* But if |Height| has the amount of length of ellipsoid's axis
+* (e.g. -6300000.m), algorithm needs about 15 steps.
+*/
+
+/* local definitions and variables */
+/* end-criterium of loop, accuracy of sin(Latitude) */
+#define genau 1.E-12
+#define genau2 (genau*genau)
+#define maxiter 30
+
+ double P; /* distance between semi-minor axis and location */
+ double RR; /* distance between center and location */
+ double CT; /* sin of geocentric latitude */
+ double ST; /* cos of geocentric latitude */
+ double RX;
+ double RK;
+ double RN; /* Earth radius at location */
+ double CPHI0; /* cos of start or old geodetic latitude in iterations */
+ double SPHI0; /* sin of start or old geodetic latitude in iterations */
+ double CPHI; /* cos of searched geodetic latitude */
+ double SPHI; /* sin of searched geodetic latitude */
+ double SDPHI; /* end-criterium: addition-theorem of sin(Latitude(iter)-Latitude(iter-1)) */
+ int iter; /* # of continuous iteration, max. 30 is always enough (s.a.) */
+
+ P = sqrt(X*X+Y*Y);
+ RR = sqrt(X*X+Y*Y+Z*Z);
+
+/* special cases for latitude and longitude */
+ if (P/gi->Geocent_a < genau) {
+
+/* special case, if P=0. (X=0., Y=0.) */
+ *Longitude = 0.;
+
+/* if (X,Y,Z)=(0.,0.,0.) then Height becomes semi-minor axis
+ * of ellipsoid (=center of mass), Latitude becomes PI/2 */
+ if (RR/gi->Geocent_a < genau) {
+ *Latitude = PI_OVER_2;
+ *Height = -gi->Geocent_b;
+ return ;
+
+ }
+ }
+ else {
+/* ellipsoidal (geodetic) longitude
+ * interval: -PI < Longitude <= +PI */
+ *Longitude=atan2(Y,X);
+ }
+
+/* --------------------------------------------------------------
+ * Following iterative algorithm was developed by
+ * "Institut für Erdmessung", University of Hannover, July 1988.
+ * Internet: www.ife.uni-hannover.de
+ * Iterative computation of CPHI,SPHI and Height.
+ * Iteration of CPHI and SPHI to 10**-12 radian resp.
+ * 2*10**-7 arcsec.
+ * --------------------------------------------------------------
+ */
+ CT = Z/RR;
+ ST = P/RR;
+ RX = 1.0/sqrt(1.0-gi->Geocent_e2*(2.0-gi->Geocent_e2)*ST*ST);
+ CPHI0 = ST*(1.0-gi->Geocent_e2)*RX;
+ SPHI0 = CT*RX;
+ iter = 0;
+
+/* loop to find sin(Latitude) resp. Latitude
+ * until |sin(Latitude(iter)-Latitude(iter-1))| < genau */
+ do
+ {
+ iter++;
+ RN = gi->Geocent_a/sqrt(1.0-gi->Geocent_e2*SPHI0*SPHI0);
+
+/* ellipsoidal (geodetic) height */
+ *Height = P*CPHI0+Z*SPHI0-RN*(1.0-gi->Geocent_e2*SPHI0*SPHI0);
+
+ /* avoid zero division */
+ if (RN+*Height==0.0) {
+ *Latitude = 0.0;
+ return;
+ }
+ RK = gi->Geocent_e2*RN/(RN+*Height);
+ RX = 1.0/sqrt(1.0-RK*(2.0-RK)*ST*ST);
+ CPHI = ST*(1.0-RK)*RX;
+ SPHI = CT*RX;
+ SDPHI = SPHI*CPHI0-CPHI*SPHI0;
+ CPHI0 = CPHI;
+ SPHI0 = SPHI;
+ }
+ while (SDPHI*SDPHI > genau2 && iter < maxiter);
+
+/* ellipsoidal (geodetic) latitude */
+ *Latitude=atan2(SPHI, fabs(CPHI));
+
+#endif /* defined(USE_ITERATIVE_METHOD) */
+} /* END OF Convert_Geocentric_To_Geodetic */