diff options
| author | Even Rouault <even.rouault@spatialys.com> | 2018-12-18 20:24:11 +0100 |
|---|---|---|
| committer | Even Rouault <even.rouault@spatialys.com> | 2018-12-26 10:08:53 +0100 |
| commit | 610957f7035242f15743c399ffd429b92bc36206 (patch) | |
| tree | 73f0d51147e2f4860c4bfc875f7a4bf9359386d4 /src/geodesic.c | |
| parent | 355d681ed88019e97742344bd642c2fd97e700a1 (diff) | |
| download | PROJ-610957f7035242f15743c399ffd429b92bc36206.tar.gz PROJ-610957f7035242f15743c399ffd429b92bc36206.zip | |
cpp conversion: minimal steps to fix compilation errors, not warnings
Diffstat (limited to 'src/geodesic.c')
| -rw-r--r-- | src/geodesic.c | 2100 |
1 files changed, 0 insertions, 2100 deletions
diff --git a/src/geodesic.c b/src/geodesic.c deleted file mode 100644 index 220dcd7f..00000000 --- a/src/geodesic.c +++ /dev/null @@ -1,2100 +0,0 @@ -/** - * \file geodesic.c - * \brief Implementation of the geodesic routines in C - * - * For the full documentation see geodesic.h. - **********************************************************************/ - -/** @cond SKIP */ - -/* - * This is a C implementation of the geodesic algorithms described in - * - * C. F. F. Karney, - * Algorithms for geodesics, - * J. Geodesy <b>87</b>, 43--55 (2013); - * https://doi.org/10.1007/s00190-012-0578-z - * Addenda: https://geographiclib.sourceforge.io/geod-addenda.html - * - * See the comments in geodesic.h for documentation. - * - * Copyright (c) Charles Karney (2012-2018) <charles@karney.com> and licensed - * under the MIT/X11 License. For more information, see - * https://geographiclib.sourceforge.io/ - */ - -#include "geodesic.h" -#ifdef PJ_LIB__ -#include "proj_math.h" -#else -#include <math.h> -#endif - -#if !defined(HAVE_C99_MATH) -#define HAVE_C99_MATH 0 -#endif - -#define GEOGRAPHICLIB_GEODESIC_ORDER 6 -#define nA1 GEOGRAPHICLIB_GEODESIC_ORDER -#define nC1 GEOGRAPHICLIB_GEODESIC_ORDER -#define nC1p GEOGRAPHICLIB_GEODESIC_ORDER -#define nA2 GEOGRAPHICLIB_GEODESIC_ORDER -#define nC2 GEOGRAPHICLIB_GEODESIC_ORDER -#define nA3 GEOGRAPHICLIB_GEODESIC_ORDER -#define nA3x nA3 -#define nC3 GEOGRAPHICLIB_GEODESIC_ORDER -#define nC3x ((nC3 * (nC3 - 1)) / 2) -#define nC4 GEOGRAPHICLIB_GEODESIC_ORDER -#define nC4x ((nC4 * (nC4 + 1)) / 2) -#define nC (GEOGRAPHICLIB_GEODESIC_ORDER + 1) - -typedef double real; -typedef int boolx; - -static unsigned init = 0; -static const int FALSE = 0; -static const int TRUE = 1; -static unsigned digits, maxit1, maxit2; -static real epsilon, realmin, pi, degree, NaN, - tiny, tol0, tol1, tol2, tolb, xthresh; - -static void Init() { - if (!init) { -#if defined(__DBL_MANT_DIG__) - digits = __DBL_MANT_DIG__; -#else - digits = 53; -#endif -#if defined(__DBL_EPSILON__) - epsilon = __DBL_EPSILON__; -#else - epsilon = pow(0.5, digits - 1); -#endif -#if defined(__DBL_MIN__) - realmin = __DBL_MIN__; -#else - realmin = pow(0.5, 1022); -#endif -#if defined(M_PI) - pi = M_PI; -#else - pi = atan2(0.0, -1.0); -#endif - maxit1 = 20; - maxit2 = maxit1 + digits + 10; - tiny = sqrt(realmin); - tol0 = epsilon; - /* Increase multiplier in defn of tol1 from 100 to 200 to fix inverse case - * 52.784459512564 0 -52.784459512563990912 179.634407464943777557 - * which otherwise failed for Visual Studio 10 (Release and Debug) */ - tol1 = 200 * tol0; - tol2 = sqrt(tol0); - /* Check on bisection interval */ - tolb = tol0 * tol2; - xthresh = 1000 * tol2; - degree = pi/180; - #if defined(NAN) - NaN = NAN; - #else - { - real minus1 = -1; - /* cppcheck-suppress wrongmathcall */ - NaN = sqrt(minus1); - } - #endif - init = 1; - } -} - -enum captype { - CAP_NONE = 0U, - CAP_C1 = 1U<<0, - CAP_C1p = 1U<<1, - CAP_C2 = 1U<<2, - CAP_C3 = 1U<<3, - CAP_C4 = 1U<<4, - CAP_ALL = 0x1FU, - OUT_ALL = 0x7F80U -}; - -static real sq(real x) { return x * x; } -#if HAVE_C99_MATH -#define atanhx atanh -#define copysignx copysign -#define hypotx hypot -#define cbrtx cbrt -#else -static real log1px(real x) { - volatile real - y = 1 + x, - z = y - 1; - /* Here's the explanation for this magic: y = 1 + z, exactly, and z - * approx x, thus log(y)/z (which is nearly constant near z = 0) returns - * a good approximation to the true log(1 + x)/x. The multiplication x * - * (log(y)/z) introduces little additional error. */ - return z == 0 ? x : x * log(y) / z; -} - -static real atanhx(real x) { - real y = fabs(x); /* Enforce odd parity */ - y = log1px(2 * y/(1 - y))/2; - return x < 0 ? -y : y; -} - -static real copysignx(real x, real y) { - return fabs(x) * (y < 0 || (y == 0 && 1/y < 0) ? -1 : 1); -} - -static real hypotx(real x, real y) -{ return sqrt(x * x + y * y); } - -static real cbrtx(real x) { - real y = pow(fabs(x), 1/(real)(3)); /* Return the real cube root */ - return x < 0 ? -y : y; -} -#endif - -static real sumx(real u, real v, real* t) { - volatile real s = u + v; - volatile real up = s - v; - volatile real vpp = s - up; - up -= u; - vpp -= v; - if (t) *t = -(up + vpp); - /* error-free sum: - * u + v = s + t - * = round(u + v) + t */ - return s; -} - -static real polyval(int N, const real p[], real x) { - real y = N < 0 ? 0 : *p++; - while (--N >= 0) y = y * x + *p++; - return y; -} - -/* mimic C++ std::min and std::max */ -static real minx(real a, real b) -{ return (b < a) ? b : a; } - -static real maxx(real a, real b) -{ return (a < b) ? b : a; } - -static void swapx(real* x, real* y) -{ real t = *x; *x = *y; *y = t; } - -static void norm2(real* sinx, real* cosx) { - real r = hypotx(*sinx, *cosx); - *sinx /= r; - *cosx /= r; -} - -static real AngNormalize(real x) { -#if HAVE_C99_MATH - x = remainder(x, (real)(360)); - return x != -180 ? x : 180; -#else - real y = fmod(x, (real)(360)); -#if defined(_MSC_VER) && _MSC_VER < 1900 - /* - * Before version 14 (2015), Visual Studio had problems dealing - * with -0.0. Specifically - * VC 10,11,12 and 32-bit compile: fmod(-0.0, 360.0) -> +0.0 - * sincosdx has a similar fix. - * python 2.7 on Windows 32-bit machines has the same problem. - */ - if (x == 0) y = x; -#endif - return y <= -180 ? y + 360 : (y <= 180 ? y : y - 360); -#endif -} - -static real LatFix(real x) -{ return fabs(x) > 90 ? NaN : x; } - -static real AngDiff(real x, real y, real* e) { - real t, d = AngNormalize(sumx(AngNormalize(-x), AngNormalize(y), &t)); - /* Here y - x = d + t (mod 360), exactly, where d is in (-180,180] and - * abs(t) <= eps (eps = 2^-45 for doubles). The only case where the - * addition of t takes the result outside the range (-180,180] is d = 180 - * and t > 0. The case, d = -180 + eps, t = -eps, can't happen, since - * sum would have returned the exact result in such a case (i.e., given t - * = 0). */ - return sumx(d == 180 && t > 0 ? -180 : d, t, e); -} - -static real AngRound(real x) { - const real z = 1/(real)(16); - volatile real y; - if (x == 0) return 0; - y = fabs(x); - /* The compiler mustn't "simplify" z - (z - y) to y */ - y = y < z ? z - (z - y) : y; - return x < 0 ? -y : y; -} - -static void sincosdx(real x, real* sinx, real* cosx) { - /* In order to minimize round-off errors, this function exactly reduces - * the argument to the range [-45, 45] before converting it to radians. */ - real r, s, c; int q; -#if HAVE_C99_MATH && !defined(__GNUC__) - /* Disable for gcc because of bug in glibc version < 2.22, see - * https://sourceware.org/bugzilla/show_bug.cgi?id=17569 */ - r = remquo(x, (real)(90), &q); -#else - r = fmod(x, (real)(360)); - /* check for NaN */ - q = r == r ? (int)(floor(r / 90 + (real)(0.5))) : 0; - r -= 90 * q; -#endif - /* now abs(r) <= 45 */ - r *= degree; - /* Possibly could call the gnu extension sincos */ - s = sin(r); c = cos(r); -#if defined(_MSC_VER) && _MSC_VER < 1900 - /* - * Before version 14 (2015), Visual Studio had problems dealing - * with -0.0. Specifically - * VC 10,11,12 and 32-bit compile: fmod(-0.0, 360.0) -> +0.0 - * VC 12 and 64-bit compile: sin(-0.0) -> +0.0 - * AngNormalize has a similar fix. - * python 2.7 on Windows 32-bit machines has the same problem. - */ - if (x == 0) s = x; -#endif - switch ((unsigned)q & 3U) { - case 0U: *sinx = s; *cosx = c; break; - case 1U: *sinx = c; *cosx = -s; break; - case 2U: *sinx = -s; *cosx = -c; break; - default: *sinx = -c; *cosx = s; break; /* case 3U */ - } - if (x != 0) { *sinx += (real)(0); *cosx += (real)(0); } -} - -static real atan2dx(real y, real x) { - /* In order to minimize round-off errors, this function rearranges the - * arguments so that result of atan2 is in the range [-pi/4, pi/4] before - * converting it to degrees and mapping the result to the correct - * quadrant. */ - int q = 0; real ang; - if (fabs(y) > fabs(x)) { swapx(&x, &y); q = 2; } - if (x < 0) { x = -x; ++q; } - /* here x >= 0 and x >= abs(y), so angle is in [-pi/4, pi/4] */ - ang = atan2(y, x) / degree; - switch (q) { - /* Note that atan2d(-0.0, 1.0) will return -0. However, we expect that - * atan2d will not be called with y = -0. If need be, include - * - * case 0: ang = 0 + ang; break; - */ - case 1: ang = (y >= 0 ? 180 : -180) - ang; break; - case 2: ang = 90 - ang; break; - case 3: ang = -90 + ang; break; - } - return ang; -} - -static void A3coeff(struct geod_geodesic* g); -static void C3coeff(struct geod_geodesic* g); -static void C4coeff(struct geod_geodesic* g); -static real SinCosSeries(boolx sinp, - real sinx, real cosx, - const real c[], int n); -static void Lengths(const struct geod_geodesic* g, - real eps, real sig12, - real ssig1, real csig1, real dn1, - real ssig2, real csig2, real dn2, - real cbet1, real cbet2, - real* ps12b, real* pm12b, real* pm0, - real* pM12, real* pM21, - /* Scratch area of the right size */ - real Ca[]); -static real Astroid(real x, real y); -static real InverseStart(const struct geod_geodesic* g, - real sbet1, real cbet1, real dn1, - real sbet2, real cbet2, real dn2, - real lam12, real slam12, real clam12, - real* psalp1, real* pcalp1, - /* Only updated if return val >= 0 */ - real* psalp2, real* pcalp2, - /* Only updated for short lines */ - real* pdnm, - /* Scratch area of the right size */ - real Ca[]); -static real Lambda12(const struct geod_geodesic* g, - real sbet1, real cbet1, real dn1, - real sbet2, real cbet2, real dn2, - real salp1, real calp1, - real slam120, real clam120, - real* psalp2, real* pcalp2, - real* psig12, - real* pssig1, real* pcsig1, - real* pssig2, real* pcsig2, - real* peps, - real* pdomg12, - boolx diffp, real* pdlam12, - /* Scratch area of the right size */ - real Ca[]); -static real A3f(const struct geod_geodesic* g, real eps); -static void C3f(const struct geod_geodesic* g, real eps, real c[]); -static void C4f(const struct geod_geodesic* g, real eps, real c[]); -static real A1m1f(real eps); -static void C1f(real eps, real c[]); -static void C1pf(real eps, real c[]); -static real A2m1f(real eps); -static void C2f(real eps, real c[]); -static int transit(real lon1, real lon2); -static int transitdirect(real lon1, real lon2); -static void accini(real s[]); -static void acccopy(const real s[], real t[]); -static void accadd(real s[], real y); -static real accsum(const real s[], real y); -static void accneg(real s[]); - -void geod_init(struct geod_geodesic* g, real a, real f) { - if (!init) Init(); - g->a = a; - g->f = f; - g->f1 = 1 - g->f; - g->e2 = g->f * (2 - g->f); - g->ep2 = g->e2 / sq(g->f1); /* e2 / (1 - e2) */ - g->n = g->f / ( 2 - g->f); - g->b = g->a * g->f1; - g->c2 = (sq(g->a) + sq(g->b) * - (g->e2 == 0 ? 1 : - (g->e2 > 0 ? atanhx(sqrt(g->e2)) : atan(sqrt(-g->e2))) / - sqrt(fabs(g->e2))))/2; /* authalic radius squared */ - /* The sig12 threshold for "really short". Using the auxiliary sphere - * solution with dnm computed at (bet1 + bet2) / 2, the relative error in the - * azimuth consistency check is sig12^2 * abs(f) * min(1, 1-f/2) / 2. (Error - * measured for 1/100 < b/a < 100 and abs(f) >= 1/1000. For a given f and - * sig12, the max error occurs for lines near the pole. If the old rule for - * computing dnm = (dn1 + dn2)/2 is used, then the error increases by a - * factor of 2.) Setting this equal to epsilon gives sig12 = etol2. Here - * 0.1 is a safety factor (error decreased by 100) and max(0.001, abs(f)) - * stops etol2 getting too large in the nearly spherical case. */ - g->etol2 = 0.1 * tol2 / - sqrt( maxx((real)(0.001), fabs(g->f)) * minx((real)(1), 1 - g->f/2) / 2 ); - - A3coeff(g); - C3coeff(g); - C4coeff(g); -} - -static void geod_lineinit_int(struct geod_geodesicline* l, - const struct geod_geodesic* g, - real lat1, real lon1, - real azi1, real salp1, real calp1, - unsigned caps) { - real cbet1, sbet1, eps; - l->a = g->a; - l->f = g->f; - l->b = g->b; - l->c2 = g->c2; - l->f1 = g->f1; - /* If caps is 0 assume the standard direct calculation */ - l->caps = (caps ? caps : GEOD_DISTANCE_IN | GEOD_LONGITUDE) | - /* always allow latitude and azimuth and unrolling of longitude */ - GEOD_LATITUDE | GEOD_AZIMUTH | GEOD_LONG_UNROLL; - - l->lat1 = LatFix(lat1); - l->lon1 = lon1; - l->azi1 = azi1; - l->salp1 = salp1; - l->calp1 = calp1; - - sincosdx(AngRound(l->lat1), &sbet1, &cbet1); sbet1 *= l->f1; - /* Ensure cbet1 = +epsilon at poles */ - norm2(&sbet1, &cbet1); cbet1 = maxx(tiny, cbet1); - l->dn1 = sqrt(1 + g->ep2 * sq(sbet1)); - - /* Evaluate alp0 from sin(alp1) * cos(bet1) = sin(alp0), */ - l->salp0 = l->salp1 * cbet1; /* alp0 in [0, pi/2 - |bet1|] */ - /* Alt: calp0 = hypot(sbet1, calp1 * cbet1). The following - * is slightly better (consider the case salp1 = 0). */ - l->calp0 = hypotx(l->calp1, l->salp1 * sbet1); - /* Evaluate sig with tan(bet1) = tan(sig1) * cos(alp1). - * sig = 0 is nearest northward crossing of equator. - * With bet1 = 0, alp1 = pi/2, we have sig1 = 0 (equatorial line). - * With bet1 = pi/2, alp1 = -pi, sig1 = pi/2 - * With bet1 = -pi/2, alp1 = 0 , sig1 = -pi/2 - * Evaluate omg1 with tan(omg1) = sin(alp0) * tan(sig1). - * With alp0 in (0, pi/2], quadrants for sig and omg coincide. - * No atan2(0,0) ambiguity at poles since cbet1 = +epsilon. - * With alp0 = 0, omg1 = 0 for alp1 = 0, omg1 = pi for alp1 = pi. */ - l->ssig1 = sbet1; l->somg1 = l->salp0 * sbet1; - l->csig1 = l->comg1 = sbet1 != 0 || l->calp1 != 0 ? cbet1 * l->calp1 : 1; - norm2(&l->ssig1, &l->csig1); /* sig1 in (-pi, pi] */ - /* norm2(somg1, comg1); -- don't need to normalize! */ - - l->k2 = sq(l->calp0) * g->ep2; - eps = l->k2 / (2 * (1 + sqrt(1 + l->k2)) + l->k2); - - if (l->caps & CAP_C1) { - real s, c; - l->A1m1 = A1m1f(eps); - C1f(eps, l->C1a); - l->B11 = SinCosSeries(TRUE, l->ssig1, l->csig1, l->C1a, nC1); - s = sin(l->B11); c = cos(l->B11); - /* tau1 = sig1 + B11 */ - l->stau1 = l->ssig1 * c + l->csig1 * s; - l->ctau1 = l->csig1 * c - l->ssig1 * s; - /* Not necessary because C1pa reverts C1a - * B11 = -SinCosSeries(TRUE, stau1, ctau1, C1pa, nC1p); */ - } - - if (l->caps & CAP_C1p) - C1pf(eps, l->C1pa); - - if (l->caps & CAP_C2) { - l->A2m1 = A2m1f(eps); - C2f(eps, l->C2a); - l->B21 = SinCosSeries(TRUE, l->ssig1, l->csig1, l->C2a, nC2); - } - - if (l->caps & CAP_C3) { - C3f(g, eps, l->C3a); - l->A3c = -l->f * l->salp0 * A3f(g, eps); - l->B31 = SinCosSeries(TRUE, l->ssig1, l->csig1, l->C3a, nC3-1); - } - - if (l->caps & CAP_C4) { - C4f(g, eps, l->C4a); - /* Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0) */ - l->A4 = sq(l->a) * l->calp0 * l->salp0 * g->e2; - l->B41 = SinCosSeries(FALSE, l->ssig1, l->csig1, l->C4a, nC4); - } - - l->a13 = l->s13 = NaN; -} - -void geod_lineinit(struct geod_geodesicline* l, - const struct geod_geodesic* g, - real lat1, real lon1, real azi1, unsigned caps) { - real salp1, calp1; - azi1 = AngNormalize(azi1); - /* Guard against underflow in salp0 */ - sincosdx(AngRound(azi1), &salp1, &calp1); - geod_lineinit_int(l, g, lat1, lon1, azi1, salp1, calp1, caps); -} - -void geod_gendirectline(struct geod_geodesicline* l, - const struct geod_geodesic* g, - real lat1, real lon1, real azi1, - unsigned flags, real s12_a12, - unsigned caps) { - geod_lineinit(l, g, lat1, lon1, azi1, caps); - geod_gensetdistance(l, flags, s12_a12); -} - -void geod_directline(struct geod_geodesicline* l, - const struct geod_geodesic* g, - real lat1, real lon1, real azi1, - real s12, unsigned caps) { - geod_gendirectline(l, g, lat1, lon1, azi1, GEOD_NOFLAGS, s12, caps); -} - -real geod_genposition(const struct geod_geodesicline* l, - unsigned flags, real s12_a12, - real* plat2, real* plon2, real* pazi2, - real* ps12, real* pm12, - real* pM12, real* pM21, - real* pS12) { - real lat2 = 0, lon2 = 0, azi2 = 0, s12 = 0, - m12 = 0, M12 = 0, M21 = 0, S12 = 0; - /* Avoid warning about uninitialized B12. */ - real sig12, ssig12, csig12, B12 = 0, AB1 = 0; - real omg12, lam12, lon12; - real ssig2, csig2, sbet2, cbet2, somg2, comg2, salp2, calp2, dn2; - unsigned outmask = - (plat2 ? GEOD_LATITUDE : 0U) | - (plon2 ? GEOD_LONGITUDE : 0U) | - (pazi2 ? GEOD_AZIMUTH : 0U) | - (ps12 ? GEOD_DISTANCE : 0U) | - (pm12 ? GEOD_REDUCEDLENGTH : 0U) | - (pM12 || pM21 ? GEOD_GEODESICSCALE : 0U) | - (pS12 ? GEOD_AREA : 0U); - - outmask &= l->caps & OUT_ALL; - if (!( TRUE /*Init()*/ && - (flags & GEOD_ARCMODE || (l->caps & (GEOD_DISTANCE_IN & OUT_ALL))) )) - /* Uninitialized or impossible distance calculation requested */ - return NaN; - - if (flags & GEOD_ARCMODE) { - /* Interpret s12_a12 as spherical arc length */ - sig12 = s12_a12 * degree; - sincosdx(s12_a12, &ssig12, &csig12); - } else { - /* Interpret s12_a12 as distance */ - real - tau12 = s12_a12 / (l->b * (1 + l->A1m1)), - s = sin(tau12), - c = cos(tau12); - /* tau2 = tau1 + tau12 */ - B12 = - SinCosSeries(TRUE, - l->stau1 * c + l->ctau1 * s, - l->ctau1 * c - l->stau1 * s, - l->C1pa, nC1p); - sig12 = tau12 - (B12 - l->B11); - ssig12 = sin(sig12); csig12 = cos(sig12); - if (fabs(l->f) > 0.01) { - /* Reverted distance series is inaccurate for |f| > 1/100, so correct - * sig12 with 1 Newton iteration. The following table shows the - * approximate maximum error for a = WGS_a() and various f relative to - * GeodesicExact. - * erri = the error in the inverse solution (nm) - * errd = the error in the direct solution (series only) (nm) - * errda = the error in the direct solution (series + 1 Newton) (nm) - * - * f erri errd errda - * -1/5 12e6 1.2e9 69e6 - * -1/10 123e3 12e6 765e3 - * -1/20 1110 108e3 7155 - * -1/50 18.63 200.9 27.12 - * -1/100 18.63 23.78 23.37 - * -1/150 18.63 21.05 20.26 - * 1/150 22.35 24.73 25.83 - * 1/100 22.35 25.03 25.31 - * 1/50 29.80 231.9 30.44 - * 1/20 5376 146e3 10e3 - * 1/10 829e3 22e6 1.5e6 - * 1/5 157e6 3.8e9 280e6 */ - real serr; - ssig2 = l->ssig1 * csig12 + l->csig1 * ssig12; - csig2 = l->csig1 * csig12 - l->ssig1 * ssig12; - B12 = SinCosSeries(TRUE, ssig2, csig2, l->C1a, nC1); - serr = (1 + l->A1m1) * (sig12 + (B12 - l->B11)) - s12_a12 / l->b; - sig12 = sig12 - serr / sqrt(1 + l->k2 * sq(ssig2)); - ssig12 = sin(sig12); csig12 = cos(sig12); - /* Update B12 below */ - } - } - - /* sig2 = sig1 + sig12 */ - ssig2 = l->ssig1 * csig12 + l->csig1 * ssig12; - csig2 = l->csig1 * csig12 - l->ssig1 * ssig12; - dn2 = sqrt(1 + l->k2 * sq(ssig2)); - if (outmask & (GEOD_DISTANCE | GEOD_REDUCEDLENGTH | GEOD_GEODESICSCALE)) { - if (flags & GEOD_ARCMODE || fabs(l->f) > 0.01) - B12 = SinCosSeries(TRUE, ssig2, csig2, l->C1a, nC1); - AB1 = (1 + l->A1m1) * (B12 - l->B11); - } - /* sin(bet2) = cos(alp0) * sin(sig2) */ - sbet2 = l->calp0 * ssig2; - /* Alt: cbet2 = hypot(csig2, salp0 * ssig2); */ - cbet2 = hypotx(l->salp0, l->calp0 * csig2); - if (cbet2 == 0) - /* I.e., salp0 = 0, csig2 = 0. Break the degeneracy in this case */ - cbet2 = csig2 = tiny; - /* tan(alp0) = cos(sig2)*tan(alp2) */ - salp2 = l->salp0; calp2 = l->calp0 * csig2; /* No need to normalize */ - - if (outmask & GEOD_DISTANCE) - s12 = (flags & GEOD_ARCMODE) ? - l->b * ((1 + l->A1m1) * sig12 + AB1) : - s12_a12; - - if (outmask & GEOD_LONGITUDE) { - real E = copysignx(1, l->salp0); /* east or west going? */ - /* tan(omg2) = sin(alp0) * tan(sig2) */ - somg2 = l->salp0 * ssig2; comg2 = csig2; /* No need to normalize */ - /* omg12 = omg2 - omg1 */ - omg12 = (flags & GEOD_LONG_UNROLL) - ? E * (sig12 - - (atan2( ssig2, csig2) - atan2( l->ssig1, l->csig1)) - + (atan2(E * somg2, comg2) - atan2(E * l->somg1, l->comg1))) - : atan2(somg2 * l->comg1 - comg2 * l->somg1, - comg2 * l->comg1 + somg2 * l->somg1); - lam12 = omg12 + l->A3c * - ( sig12 + (SinCosSeries(TRUE, ssig2, csig2, l->C3a, nC3-1) - - l->B31)); - lon12 = lam12 / degree; - lon2 = (flags & GEOD_LONG_UNROLL) ? l->lon1 + lon12 : - AngNormalize(AngNormalize(l->lon1) + AngNormalize(lon12)); - } - - if (outmask & GEOD_LATITUDE) - lat2 = atan2dx(sbet2, l->f1 * cbet2); - - if (outmask & GEOD_AZIMUTH) - azi2 = atan2dx(salp2, calp2); - - if (outmask & (GEOD_REDUCEDLENGTH | GEOD_GEODESICSCALE)) { - real - B22 = SinCosSeries(TRUE, ssig2, csig2, l->C2a, nC2), - AB2 = (1 + l->A2m1) * (B22 - l->B21), - J12 = (l->A1m1 - l->A2m1) * sig12 + (AB1 - AB2); - if (outmask & GEOD_REDUCEDLENGTH) - /* Add parens around (csig1 * ssig2) and (ssig1 * csig2) to ensure - * accurate cancellation in the case of coincident points. */ - m12 = l->b * ((dn2 * (l->csig1 * ssig2) - l->dn1 * (l->ssig1 * csig2)) - - l->csig1 * csig2 * J12); - if (outmask & GEOD_GEODESICSCALE) { - real t = l->k2 * (ssig2 - l->ssig1) * (ssig2 + l->ssig1) / - (l->dn1 + dn2); - M12 = csig12 + (t * ssig2 - csig2 * J12) * l->ssig1 / l->dn1; - M21 = csig12 - (t * l->ssig1 - l->csig1 * J12) * ssig2 / dn2; - } - } - - if (outmask & GEOD_AREA) { - real - B42 = SinCosSeries(FALSE, ssig2, csig2, l->C4a, nC4); - real salp12, calp12; - if (l->calp0 == 0 || l->salp0 == 0) { - /* alp12 = alp2 - alp1, used in atan2 so no need to normalize */ - salp12 = salp2 * l->calp1 - calp2 * l->salp1; - calp12 = calp2 * l->calp1 + salp2 * l->salp1; - } else { - /* tan(alp) = tan(alp0) * sec(sig) - * tan(alp2-alp1) = (tan(alp2) -tan(alp1)) / (tan(alp2)*tan(alp1)+1) - * = calp0 * salp0 * (csig1-csig2) / (salp0^2 + calp0^2 * csig1*csig2) - * If csig12 > 0, write - * csig1 - csig2 = ssig12 * (csig1 * ssig12 / (1 + csig12) + ssig1) - * else - * csig1 - csig2 = csig1 * (1 - csig12) + ssig12 * ssig1 - * No need to normalize */ - salp12 = l->calp0 * l->salp0 * - (csig12 <= 0 ? l->csig1 * (1 - csig12) + ssig12 * l->ssig1 : - ssig12 * (l->csig1 * ssig12 / (1 + csig12) + l->ssig1)); - calp12 = sq(l->salp0) + sq(l->calp0) * l->csig1 * csig2; - } - S12 = l->c2 * atan2(salp12, calp12) + l->A4 * (B42 - l->B41); - } - - /* In the pattern - * - * if ((outmask & GEOD_XX) && pYY) - * *pYY = YY; - * - * the second check "&& pYY" is redundant. It's there to make the CLang - * static analyzer happy. - */ - if ((outmask & GEOD_LATITUDE) && plat2) - *plat2 = lat2; - if ((outmask & GEOD_LONGITUDE) && plon2) - *plon2 = lon2; - if ((outmask & GEOD_AZIMUTH) && pazi2) - *pazi2 = azi2; - if ((outmask & GEOD_DISTANCE) && ps12) - *ps12 = s12; - if ((outmask & GEOD_REDUCEDLENGTH) && pm12) - *pm12 = m12; - if (outmask & GEOD_GEODESICSCALE) { - if (pM12) *pM12 = M12; - if (pM21) *pM21 = M21; - } - if ((outmask & GEOD_AREA) && pS12) - *pS12 = S12; - - return (flags & GEOD_ARCMODE) ? s12_a12 : sig12 / degree; -} - -void geod_setdistance(struct geod_geodesicline* l, real s13) { - l->s13 = s13; - l->a13 = geod_genposition(l, GEOD_NOFLAGS, l->s13, 0, 0, 0, 0, 0, 0, 0, 0); -} - -static void geod_setarc(struct geod_geodesicline* l, real a13) { - l->a13 = a13; l->s13 = NaN; - geod_genposition(l, GEOD_ARCMODE, l->a13, 0, 0, 0, &l->s13, 0, 0, 0, 0); -} - -void geod_gensetdistance(struct geod_geodesicline* l, - unsigned flags, real s13_a13) { - (flags & GEOD_ARCMODE) ? - geod_setarc(l, s13_a13) : - geod_setdistance(l, s13_a13); -} - -void geod_position(const struct geod_geodesicline* l, real s12, - real* plat2, real* plon2, real* pazi2) { - geod_genposition(l, FALSE, s12, plat2, plon2, pazi2, 0, 0, 0, 0, 0); -} - -real geod_gendirect(const struct geod_geodesic* g, - real lat1, real lon1, real azi1, - unsigned flags, real s12_a12, - real* plat2, real* plon2, real* pazi2, - real* ps12, real* pm12, real* pM12, real* pM21, - real* pS12) { - struct geod_geodesicline l; - unsigned outmask = - (plat2 ? GEOD_LATITUDE : 0U) | - (plon2 ? GEOD_LONGITUDE : 0U) | - (pazi2 ? GEOD_AZIMUTH : 0U) | - (ps12 ? GEOD_DISTANCE : 0U) | - (pm12 ? GEOD_REDUCEDLENGTH : 0U) | - (pM12 || pM21 ? GEOD_GEODESICSCALE : 0U) | - (pS12 ? GEOD_AREA : 0U); - - geod_lineinit(&l, g, lat1, lon1, azi1, - /* Automatically supply GEOD_DISTANCE_IN if necessary */ - outmask | - ((flags & GEOD_ARCMODE) ? GEOD_NONE : GEOD_DISTANCE_IN)); - return geod_genposition(&l, flags, s12_a12, - plat2, plon2, pazi2, ps12, pm12, pM12, pM21, pS12); -} - -void geod_direct(const struct geod_geodesic* g, - real lat1, real lon1, real azi1, - real s12, - real* plat2, real* plon2, real* pazi2) { - geod_gendirect(g, lat1, lon1, azi1, GEOD_NOFLAGS, s12, plat2, plon2, pazi2, - 0, 0, 0, 0, 0); -} - -static real geod_geninverse_int(const struct geod_geodesic* g, - real lat1, real lon1, real lat2, real lon2, - real* ps12, - real* psalp1, real* pcalp1, - real* psalp2, real* pcalp2, - real* pm12, real* pM12, real* pM21, - real* pS12) { - real s12 = 0, m12 = 0, M12 = 0, M21 = 0, S12 = 0; - real lon12, lon12s; - int latsign, lonsign, swapp; - real sbet1, cbet1, sbet2, cbet2, s12x = 0, m12x = 0; - real dn1, dn2, lam12, slam12, clam12; - real a12 = 0, sig12, calp1 = 0, salp1 = 0, calp2 = 0, salp2 = 0; - real Ca[nC]; - boolx meridian; - /* somg12 > 1 marks that it needs to be calculated */ - real omg12 = 0, somg12 = 2, comg12 = 0; - - unsigned outmask = - (ps12 ? GEOD_DISTANCE : 0U) | - (pm12 ? GEOD_REDUCEDLENGTH : 0U) | - (pM12 || pM21 ? GEOD_GEODESICSCALE : 0U) | - (pS12 ? GEOD_AREA : 0U); - - outmask &= OUT_ALL; - /* Compute longitude difference (AngDiff does this carefully). Result is - * in [-180, 180] but -180 is only for west-going geodesics. 180 is for - * east-going and meridional geodesics. */ - lon12 = AngDiff(lon1, lon2, &lon12s); - /* Make longitude difference positive. */ - lonsign = lon12 >= 0 ? 1 : -1; - /* If very close to being on the same half-meridian, then make it so. */ - lon12 = lonsign * AngRound(lon12); - lon12s = AngRound((180 - lon12) - lonsign * lon12s); - lam12 = lon12 * degree; - if (lon12 > 90) { - sincosdx(lon12s, &slam12, &clam12); - clam12 = -clam12; - } else - sincosdx(lon12, &slam12, &clam12); - - /* If really close to the equator, treat as on equator. */ - lat1 = AngRound(LatFix(lat1)); - lat2 = AngRound(LatFix(lat2)); - /* Swap points so that point with higher (abs) latitude is point 1 - * If one latitude is a nan, then it becomes lat1. */ - swapp = fabs(lat1) < fabs(lat2) ? -1 : 1; - if (swapp < 0) { - lonsign *= -1; - swapx(&lat1, &lat2); - } - /* Make lat1 <= 0 */ - latsign = lat1 < 0 ? 1 : -1; - lat1 *= latsign; - lat2 *= latsign; - /* Now we have - * - * 0 <= lon12 <= 180 - * -90 <= lat1 <= 0 - * lat1 <= lat2 <= -lat1 - * - * longsign, swapp, latsign register the transformation to bring the - * coordinates to this canonical form. In all cases, 1 means no change was - * made. We make these transformations so that there are few cases to - * check, e.g., on verifying quadrants in atan2. In addition, this - * enforces some symmetries in the results returned. */ - - sincosdx(lat1, &sbet1, &cbet1); sbet1 *= g->f1; - /* Ensure cbet1 = +epsilon at poles */ - norm2(&sbet1, &cbet1); cbet1 = maxx(tiny, cbet1); - - sincosdx(lat2, &sbet2, &cbet2); sbet2 *= g->f1; - /* Ensure cbet2 = +epsilon at poles */ - norm2(&sbet2, &cbet2); cbet2 = maxx(tiny, cbet2); - - /* If cbet1 < -sbet1, then cbet2 - cbet1 is a sensitive measure of the - * |bet1| - |bet2|. Alternatively (cbet1 >= -sbet1), abs(sbet2) + sbet1 is - * a better measure. This logic is used in assigning calp2 in Lambda12. - * Sometimes these quantities vanish and in that case we force bet2 = +/- - * bet1 exactly. An example where is is necessary is the inverse problem - * 48.522876735459 0 -48.52287673545898293 179.599720456223079643 - * which failed with Visual Studio 10 (Release and Debug) */ - - if (cbet1 < -sbet1) { - if (cbet2 == cbet1) - sbet2 = sbet2 < 0 ? sbet1 : -sbet1; - } else { - if (fabs(sbet2) == -sbet1) - cbet2 = cbet1; - } - - dn1 = sqrt(1 + g->ep2 * sq(sbet1)); - dn2 = sqrt(1 + g->ep2 * sq(sbet2)); - - meridian = lat1 == -90 || slam12 == 0; - - if (meridian) { - - /* Endpoints are on a single full meridian, so the geodesic might lie on - * a meridian. */ - - real ssig1, csig1, ssig2, csig2; - calp1 = clam12; salp1 = slam12; /* Head to the target longitude */ - calp2 = 1; salp2 = 0; /* At the target we're heading north */ - - /* tan(bet) = tan(sig) * cos(alp) */ - ssig1 = sbet1; csig1 = calp1 * cbet1; - ssig2 = sbet2; csig2 = calp2 * cbet2; - - /* sig12 = sig2 - sig1 */ - sig12 = atan2(maxx((real)(0), csig1 * ssig2 - ssig1 * csig2), - csig1 * csig2 + ssig1 * ssig2); - Lengths(g, g->n, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2, - cbet1, cbet2, &s12x, &m12x, 0, - (outmask & GEOD_GEODESICSCALE) ? &M12 : 0, - (outmask & GEOD_GEODESICSCALE) ? &M21 : 0, - Ca); - /* Add the check for sig12 since zero length geodesics might yield m12 < - * 0. Test case was - * - * echo 20.001 0 20.001 0 | GeodSolve -i - * - * In fact, we will have sig12 > pi/2 for meridional geodesic which is - * not a shortest path. */ - if (sig12 < 1 || m12x >= 0) { - /* Need at least 2, to handle 90 0 90 180 */ - if (sig12 < 3 * tiny) - sig12 = m12x = s12x = 0; - m12x *= g->b; - s12x *= g->b; - a12 = sig12 / degree; - } else - /* m12 < 0, i.e., prolate and too close to anti-podal */ - meridian = FALSE; - } - - if (!meridian && - sbet1 == 0 && /* and sbet2 == 0 */ - /* Mimic the way Lambda12 works with calp1 = 0 */ - (g->f <= 0 || lon12s >= g->f * 180)) { - - /* Geodesic runs along equator */ - calp1 = calp2 = 0; salp1 = salp2 = 1; - s12x = g->a * lam12; - sig12 = omg12 = lam12 / g->f1; - m12x = g->b * sin(sig12); - if (outmask & GEOD_GEODESICSCALE) - M12 = M21 = cos(sig12); - a12 = lon12 / g->f1; - - } else if (!meridian) { - - /* Now point1 and point2 belong within a hemisphere bounded by a - * meridian and geodesic is neither meridional or equatorial. */ - - /* Figure a starting point for Newton's method */ - real dnm = 0; - sig12 = InverseStart(g, sbet1, cbet1, dn1, sbet2, cbet2, dn2, - lam12, slam12, clam12, - &salp1, &calp1, &salp2, &calp2, &dnm, - Ca); - - if (sig12 >= 0) { - /* Short lines (InverseStart sets salp2, calp2, dnm) */ - s12x = sig12 * g->b * dnm; - m12x = sq(dnm) * g->b * sin(sig12 / dnm); - if (outmask & GEOD_GEODESICSCALE) - M12 = M21 = cos(sig12 / dnm); - a12 = sig12 / degree; - omg12 = lam12 / (g->f1 * dnm); - } else { - - /* Newton's method. This is a straightforward solution of f(alp1) = - * lambda12(alp1) - lam12 = 0 with one wrinkle. f(alp) has exactly one - * root in the interval (0, pi) and its derivative is positive at the - * root. Thus f(alp) is positive for alp > alp1 and negative for alp < - * alp1. During the course of the iteration, a range (alp1a, alp1b) is - * maintained which brackets the root and with each evaluation of - * f(alp) the range is shrunk, if possible. Newton's method is - * restarted whenever the derivative of f is negative (because the new - * value of alp1 is then further from the solution) or if the new - * estimate of alp1 lies outside (0,pi); in this case, the new starting - * guess is taken to be (alp1a + alp1b) / 2. */ - real ssig1 = 0, csig1 = 0, ssig2 = 0, csig2 = 0, eps = 0, domg12 = 0; - unsigned numit = 0; - /* Bracketing range */ - real salp1a = tiny, calp1a = 1, salp1b = tiny, calp1b = -1; - boolx tripn = FALSE; - boolx tripb = FALSE; - for (; numit < maxit2; ++numit) { - /* the WGS84 test set: mean = 1.47, sd = 1.25, max = 16 - * WGS84 and random input: mean = 2.85, sd = 0.60 */ - real dv = 0, - v = Lambda12(g, sbet1, cbet1, dn1, sbet2, cbet2, dn2, salp1, calp1, - slam12, clam12, - &salp2, &calp2, &sig12, &ssig1, &csig1, &ssig2, &csig2, - &eps, &domg12, numit < maxit1, &dv, Ca); - /* 2 * tol0 is approximately 1 ulp for a number in [0, pi]. */ - /* Reversed test to allow escape with NaNs */ - if (tripb || !(fabs(v) >= (tripn ? 8 : 1) * tol0)) break; - /* Update bracketing values */ - if (v > 0 && (numit > maxit1 || calp1/salp1 > calp1b/salp1b)) - { salp1b = salp1; calp1b = calp1; } - else if (v < 0 && (numit > maxit1 || calp1/salp1 < calp1a/salp1a)) - { salp1a = salp1; calp1a = calp1; } - if (numit < maxit1 && dv > 0) { - real - dalp1 = -v/dv; - real - sdalp1 = sin(dalp1), cdalp1 = cos(dalp1), - nsalp1 = salp1 * cdalp1 + calp1 * sdalp1; - if (nsalp1 > 0 && fabs(dalp1) < pi) { - calp1 = calp1 * cdalp1 - salp1 * sdalp1; - salp1 = nsalp1; - norm2(&salp1, &calp1); - /* In some regimes we don't get quadratic convergence because - * slope -> 0. So use convergence conditions based on epsilon - * instead of sqrt(epsilon). */ - tripn = fabs(v) <= 16 * tol0; - continue; - } - } - /* Either dv was not positive or updated value was outside legal - * range. Use the midpoint of the bracket as the next estimate. - * This mechanism is not needed for the WGS84 ellipsoid, but it does - * catch problems with more eccentric ellipsoids. Its efficacy is - * such for the WGS84 test set with the starting guess set to alp1 = - * 90deg: - * the WGS84 test set: mean = 5.21, sd = 3.93, max = 24 - * WGS84 and random input: mean = 4.74, sd = 0.99 */ - salp1 = (salp1a + salp1b)/2; - calp1 = (calp1a + calp1b)/2; - norm2(&salp1, &calp1); - tripn = FALSE; - tripb = (fabs(salp1a - salp1) + (calp1a - calp1) < tolb || - fabs(salp1 - salp1b) + (calp1 - calp1b) < tolb); - } - Lengths(g, eps, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2, - cbet1, cbet2, &s12x, &m12x, 0, - (outmask & GEOD_GEODESICSCALE) ? &M12 : 0, - (outmask & GEOD_GEODESICSCALE) ? &M21 : 0, Ca); - m12x *= g->b; - s12x *= g->b; - a12 = sig12 / degree; - if (outmask & GEOD_AREA) { - /* omg12 = lam12 - domg12 */ - real sdomg12 = sin(domg12), cdomg12 = cos(domg12); - somg12 = slam12 * cdomg12 - clam12 * sdomg12; - comg12 = clam12 * cdomg12 + slam12 * sdomg12; - } - } - } - - if (outmask & GEOD_DISTANCE) - s12 = 0 + s12x; /* Convert -0 to 0 */ - - if (outmask & GEOD_REDUCEDLENGTH) - m12 = 0 + m12x; /* Convert -0 to 0 */ - - if (outmask & GEOD_AREA) { - real - /* From Lambda12: sin(alp1) * cos(bet1) = sin(alp0) */ - salp0 = salp1 * cbet1, - calp0 = hypotx(calp1, salp1 * sbet1); /* calp0 > 0 */ - real alp12; - if (calp0 != 0 && salp0 != 0) { - real - /* From Lambda12: tan(bet) = tan(sig) * cos(alp) */ - ssig1 = sbet1, csig1 = calp1 * cbet1, - ssig2 = sbet2, csig2 = calp2 * cbet2, - k2 = sq(calp0) * g->ep2, - eps = k2 / (2 * (1 + sqrt(1 + k2)) + k2), - /* Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0). */ - A4 = sq(g->a) * calp0 * salp0 * g->e2; - real B41, B42; - norm2(&ssig1, &csig1); - norm2(&ssig2, &csig2); - C4f(g, eps, Ca); - B41 = SinCosSeries(FALSE, ssig1, csig1, Ca, nC4); - B42 = SinCosSeries(FALSE, ssig2, csig2, Ca, nC4); - S12 = A4 * (B42 - B41); - } else - /* Avoid problems with indeterminate sig1, sig2 on equator */ - S12 = 0; - - if (!meridian && somg12 > 1) { - somg12 = sin(omg12); comg12 = cos(omg12); - } - - if (!meridian && - /* omg12 < 3/4 * pi */ - comg12 > -(real)(0.7071) && /* Long difference not too big */ - sbet2 - sbet1 < (real)(1.75)) { /* Lat difference not too big */ - /* Use tan(Gamma/2) = tan(omg12/2) - * * (tan(bet1/2)+tan(bet2/2))/(1+tan(bet1/2)*tan(bet2/2)) - * with tan(x/2) = sin(x)/(1+cos(x)) */ - real - domg12 = 1 + comg12, dbet1 = 1 + cbet1, dbet2 = 1 + cbet2; - alp12 = 2 * atan2( somg12 * ( sbet1 * dbet2 + sbet2 * dbet1 ), - domg12 * ( sbet1 * sbet2 + dbet1 * dbet2 ) ); - } else { - /* alp12 = alp2 - alp1, used in atan2 so no need to normalize */ - real - salp12 = salp2 * calp1 - calp2 * salp1, - calp12 = calp2 * calp1 + salp2 * salp1; - /* The right thing appears to happen if alp1 = +/-180 and alp2 = 0, viz - * salp12 = -0 and alp12 = -180. However this depends on the sign - * being attached to 0 correctly. The following ensures the correct - * behavior. */ - if (salp12 == 0 && calp12 < 0) { - salp12 = tiny * calp1; - calp12 = -1; - } - alp12 = atan2(salp12, calp12); - } - S12 += g->c2 * alp12; - S12 *= swapp * lonsign * latsign; - /* Convert -0 to 0 */ - S12 += 0; - } - - /* Convert calp, salp to azimuth accounting for lonsign, swapp, latsign. */ - if (swapp < 0) { - swapx(&salp1, &salp2); - swapx(&calp1, &calp2); - if (outmask & GEOD_GEODESICSCALE) - swapx(&M12, &M21); - } - - salp1 *= swapp * lonsign; calp1 *= swapp * latsign; - salp2 *= swapp * lonsign; calp2 *= swapp * latsign; - - if (psalp1) *psalp1 = salp1; - if (pcalp1) *pcalp1 = calp1; - if (psalp2) *psalp2 = salp2; - if (pcalp2) *pcalp2 = calp2; - - if (outmask & GEOD_DISTANCE) - *ps12 = s12; - if (outmask & GEOD_REDUCEDLENGTH) - *pm12 = m12; - if (outmask & GEOD_GEODESICSCALE) { - if (pM12) *pM12 = M12; - if (pM21) *pM21 = M21; - } - if (outmask & GEOD_AREA) - *pS12 = S12; - - /* Returned value in [0, 180] */ - return a12; -} - -real geod_geninverse(const struct geod_geodesic* g, - real lat1, real lon1, real lat2, real lon2, - real* ps12, real* pazi1, real* pazi2, - real* pm12, real* pM12, real* pM21, real* pS12) { - real salp1, calp1, salp2, calp2, - a12 = geod_geninverse_int(g, lat1, lon1, lat2, lon2, ps12, - &salp1, &calp1, &salp2, &calp2, - pm12, pM12, pM21, pS12); - if (pazi1) *pazi1 = atan2dx(salp1, calp1); - if (pazi2) *pazi2 = atan2dx(salp2, calp2); - return a12; -} - -void geod_inverseline(struct geod_geodesicline* l, - const struct geod_geodesic* g, - real lat1, real lon1, real lat2, real lon2, - unsigned caps) { - real salp1, calp1, - a12 = geod_geninverse_int(g, lat1, lon1, lat2, lon2, 0, - &salp1, &calp1, 0, 0, - 0, 0, 0, 0), - azi1 = atan2dx(salp1, calp1); - caps = caps ? caps : GEOD_DISTANCE_IN | GEOD_LONGITUDE; - /* Ensure that a12 can be converted to a distance */ - if (caps & (OUT_ALL & GEOD_DISTANCE_IN)) caps |= GEOD_DISTANCE; - geod_lineinit_int(l, g, lat1, lon1, azi1, salp1, calp1, caps); - geod_setarc(l, a12); -} - -void geod_inverse(const struct geod_geodesic* g, - real lat1, real lon1, real lat2, real lon2, - real* ps12, real* pazi1, real* pazi2) { - geod_geninverse(g, lat1, lon1, lat2, lon2, ps12, pazi1, pazi2, 0, 0, 0, 0); -} - -real SinCosSeries(boolx sinp, real sinx, real cosx, const real c[], int n) { - /* Evaluate - * y = sinp ? sum(c[i] * sin( 2*i * x), i, 1, n) : - * sum(c[i] * cos((2*i+1) * x), i, 0, n-1) - * using Clenshaw summation. N.B. c[0] is unused for sin series - * Approx operation count = (n + 5) mult and (2 * n + 2) add */ - real ar, y0, y1; - c += (n + sinp); /* Point to one beyond last element */ - ar = 2 * (cosx - sinx) * (cosx + sinx); /* 2 * cos(2 * x) */ - y0 = (n & 1) ? *--c : 0; y1 = 0; /* accumulators for sum */ - /* Now n is even */ - n /= 2; - while (n--) { - /* Unroll loop x 2, so accumulators return to their original role */ - y1 = ar * y0 - y1 + *--c; - y0 = ar * y1 - y0 + *--c; - } - return sinp - ? 2 * sinx * cosx * y0 /* sin(2 * x) * y0 */ - : cosx * (y0 - y1); /* cos(x) * (y0 - y1) */ -} - -void Lengths(const struct geod_geodesic* g, - real eps, real sig12, - real ssig1, real csig1, real dn1, - real ssig2, real csig2, real dn2, - real cbet1, real cbet2, - real* ps12b, real* pm12b, real* pm0, - real* pM12, real* pM21, - /* Scratch area of the right size */ - real Ca[]) { - real m0 = 0, J12 = 0, A1 = 0, A2 = 0; - real Cb[nC]; - - /* Return m12b = (reduced length)/b; also calculate s12b = distance/b, - * and m0 = coefficient of secular term in expression for reduced length. */ - boolx redlp = pm12b || pm0 || pM12 || pM21; - if (ps12b || redlp) { - A1 = A1m1f(eps); - C1f(eps, Ca); - if (redlp) { - A2 = A2m1f(eps); - C2f(eps, Cb); - m0 = A1 - A2; - A2 = 1 + A2; - } - A1 = 1 + A1; - } - if (ps12b) { - real B1 = SinCosSeries(TRUE, ssig2, csig2, Ca, nC1) - - SinCosSeries(TRUE, ssig1, csig1, Ca, nC1); - /* Missing a factor of b */ - *ps12b = A1 * (sig12 + B1); - if (redlp) { - real B2 = SinCosSeries(TRUE, ssig2, csig2, Cb, nC2) - - SinCosSeries(TRUE, ssig1, csig1, Cb, nC2); - J12 = m0 * sig12 + (A1 * B1 - A2 * B2); - } - } else if (redlp) { - /* Assume here that nC1 >= nC2 */ - int l; - for (l = 1; l <= nC2; ++l) - Cb[l] = A1 * Ca[l] - A2 * Cb[l]; - J12 = m0 * sig12 + (SinCosSeries(TRUE, ssig2, csig2, Cb, nC2) - - SinCosSeries(TRUE, ssig1, csig1, Cb, nC2)); - } - if (pm0) *pm0 = m0; - if (pm12b) - /* Missing a factor of b. - * Add parens around (csig1 * ssig2) and (ssig1 * csig2) to ensure - * accurate cancellation in the case of coincident points. */ - *pm12b = dn2 * (csig1 * ssig2) - dn1 * (ssig1 * csig2) - - csig1 * csig2 * J12; - if (pM12 || pM21) { - real csig12 = csig1 * csig2 + ssig1 * ssig2; - real t = g->ep2 * (cbet1 - cbet2) * (cbet1 + cbet2) / (dn1 + dn2); - if (pM12) - *pM12 = csig12 + (t * ssig2 - csig2 * J12) * ssig1 / dn1; - if (pM21) - *pM21 = csig12 - (t * ssig1 - csig1 * J12) * ssig2 / dn2; - } -} - -real Astroid(real x, real y) { - /* Solve k^4+2*k^3-(x^2+y^2-1)*k^2-2*y^2*k-y^2 = 0 for positive root k. - * This solution is adapted from Geocentric::Reverse. */ - real k; - real - p = sq(x), - q = sq(y), - r = (p + q - 1) / 6; - if ( !(q == 0 && r <= 0) ) { - real - /* Avoid possible division by zero when r = 0 by multiplying equations - * for s and t by r^3 and r, resp. */ - S = p * q / 4, /* S = r^3 * s */ - r2 = sq(r), - r3 = r * r2, - /* The discriminant of the quadratic equation for T3. This is zero on - * the evolute curve p^(1/3)+q^(1/3) = 1 */ - disc = S * (S + 2 * r3); - real u = r; - real v, uv, w; - if (disc >= 0) { - real T3 = S + r3, T; - /* Pick the sign on the sqrt to maximize abs(T3). This minimizes loss - * of precision due to cancellation. The result is unchanged because - * of the way the T is used in definition of u. */ - T3 += T3 < 0 ? -sqrt(disc) : sqrt(disc); /* T3 = (r * t)^3 */ - /* N.B. cbrtx always returns the real root. cbrtx(-8) = -2. */ - T = cbrtx(T3); /* T = r * t */ - /* T can be zero; but then r2 / T -> 0. */ - u += T + (T != 0 ? r2 / T : 0); - } else { - /* T is complex, but the way u is defined the result is real. */ - real ang = atan2(sqrt(-disc), -(S + r3)); - /* There are three possible cube roots. We choose the root which - * avoids cancellation. Note that disc < 0 implies that r < 0. */ - u += 2 * r * cos(ang / 3); - } - v = sqrt(sq(u) + q); /* guaranteed positive */ - /* Avoid loss of accuracy when u < 0. */ - uv = u < 0 ? q / (v - u) : u + v; /* u+v, guaranteed positive */ - w = (uv - q) / (2 * v); /* positive? */ - /* Rearrange expression for k to avoid loss of accuracy due to - * subtraction. Division by 0 not possible because uv > 0, w >= 0. */ - k = uv / (sqrt(uv + sq(w)) + w); /* guaranteed positive */ - } else { /* q == 0 && r <= 0 */ - /* y = 0 with |x| <= 1. Handle this case directly. - * for y small, positive root is k = abs(y)/sqrt(1-x^2) */ - k = 0; - } - return k; -} - -real InverseStart(const struct geod_geodesic* g, - real sbet1, real cbet1, real dn1, - real sbet2, real cbet2, real dn2, - real lam12, real slam12, real clam12, - real* psalp1, real* pcalp1, - /* Only updated if return val >= 0 */ - real* psalp2, real* pcalp2, - /* Only updated for short lines */ - real* pdnm, - /* Scratch area of the right size */ - real Ca[]) { - real salp1 = 0, calp1 = 0, salp2 = 0, calp2 = 0, dnm = 0; - - /* Return a starting point for Newton's method in salp1 and calp1 (function - * value is -1). If Newton's method doesn't need to be used, return also - * salp2 and calp2 and function value is sig12. */ - real - sig12 = -1, /* Return value */ - /* bet12 = bet2 - bet1 in [0, pi); bet12a = bet2 + bet1 in (-pi, 0] */ - sbet12 = sbet2 * cbet1 - cbet2 * sbet1, - cbet12 = cbet2 * cbet1 + sbet2 * sbet1; - real sbet12a; - boolx shortline = cbet12 >= 0 && sbet12 < (real)(0.5) && - cbet2 * lam12 < (real)(0.5); - real somg12, comg12, ssig12, csig12; -#if defined(__GNUC__) && __GNUC__ == 4 && \ - (__GNUC_MINOR__ < 6 || defined(__MINGW32__)) - /* Volatile declaration needed to fix inverse cases - * 88.202499451857 0 -88.202499451857 179.981022032992859592 - * 89.262080389218 0 -89.262080389218 179.992207982775375662 - * 89.333123580033 0 -89.333123580032997687 179.99295812360148422 - * which otherwise fail with g++ 4.4.4 x86 -O3 (Linux) - * and g++ 4.4.0 (mingw) and g++ 4.6.1 (tdm mingw). */ - { - volatile real xx1 = sbet2 * cbet1; - volatile real xx2 = cbet2 * sbet1; - sbet12a = xx1 + xx2; - } -#else - sbet12a = sbet2 * cbet1 + cbet2 * sbet1; -#endif - if (shortline) { - real sbetm2 = sq(sbet1 + sbet2), omg12; - /* sin((bet1+bet2)/2)^2 - * = (sbet1 + sbet2)^2 / ((sbet1 + sbet2)^2 + (cbet1 + cbet2)^2) */ - sbetm2 /= sbetm2 + sq(cbet1 + cbet2); - dnm = sqrt(1 + g->ep2 * sbetm2); - omg12 = lam12 / (g->f1 * dnm); - somg12 = sin(omg12); comg12 = cos(omg12); - } else { - somg12 = slam12; comg12 = clam12; - } - - salp1 = cbet2 * somg12; - calp1 = comg12 >= 0 ? - sbet12 + cbet2 * sbet1 * sq(somg12) / (1 + comg12) : - sbet12a - cbet2 * sbet1 * sq(somg12) / (1 - comg12); - - ssig12 = hypotx(salp1, calp1); - csig12 = sbet1 * sbet2 + cbet1 * cbet2 * comg12; - - if (shortline && ssig12 < g->etol2) { - /* really short lines */ - salp2 = cbet1 * somg12; - calp2 = sbet12 - cbet1 * sbet2 * - (comg12 >= 0 ? sq(somg12) / (1 + comg12) : 1 - comg12); - norm2(&salp2, &calp2); - /* Set return value */ - sig12 = atan2(ssig12, csig12); - } else if (fabs(g->n) > (real)(0.1) || /* No astroid calc if too eccentric */ - csig12 >= 0 || - ssig12 >= 6 * fabs(g->n) * pi * sq(cbet1)) { - /* Nothing to do, zeroth order spherical approximation is OK */ - } else { - /* Scale lam12 and bet2 to x, y coordinate system where antipodal point - * is at origin and singular point is at y = 0, x = -1. */ - real y, lamscale, betscale; - /* Volatile declaration needed to fix inverse case - * 56.320923501171 0 -56.320923501171 179.664747671772880215 - * which otherwise fails with g++ 4.4.4 x86 -O3 */ - volatile real x; - real lam12x = atan2(-slam12, -clam12); /* lam12 - pi */ - if (g->f >= 0) { /* In fact f == 0 does not get here */ - /* x = dlong, y = dlat */ - { - real - k2 = sq(sbet1) * g->ep2, - eps = k2 / (2 * (1 + sqrt(1 + k2)) + k2); - lamscale = g->f * cbet1 * A3f(g, eps) * pi; - } - betscale = lamscale * cbet1; - - x = lam12x / lamscale; - y = sbet12a / betscale; - } else { /* f < 0 */ - /* x = dlat, y = dlong */ - real - cbet12a = cbet2 * cbet1 - sbet2 * sbet1, - bet12a = atan2(sbet12a, cbet12a); - real m12b, m0; - /* In the case of lon12 = 180, this repeats a calculation made in - * Inverse. */ - Lengths(g, g->n, pi + bet12a, - sbet1, -cbet1, dn1, sbet2, cbet2, dn2, - cbet1, cbet2, 0, &m12b, &m0, 0, 0, Ca); - x = -1 + m12b / (cbet1 * cbet2 * m0 * pi); - betscale = x < -(real)(0.01) ? sbet12a / x : - -g->f * sq(cbet1) * pi; - lamscale = betscale / cbet1; - y = lam12x / lamscale; - } - - if (y > -tol1 && x > -1 - xthresh) { - /* strip near cut */ - if (g->f >= 0) { - salp1 = minx((real)(1), -(real)(x)); calp1 = - sqrt(1 - sq(salp1)); - } else { - calp1 = maxx((real)(x > -tol1 ? 0 : -1), (real)(x)); - salp1 = sqrt(1 - sq(calp1)); - } - } else { - /* Estimate alp1, by solving the astroid problem. - * - * Could estimate alpha1 = theta + pi/2, directly, i.e., - * calp1 = y/k; salp1 = -x/(1+k); for f >= 0 - * calp1 = x/(1+k); salp1 = -y/k; for f < 0 (need to check) - * - * However, it's better to estimate omg12 from astroid and use - * spherical formula to compute alp1. This reduces the mean number of - * Newton iterations for astroid cases from 2.24 (min 0, max 6) to 2.12 - * (min 0 max 5). The changes in the number of iterations are as - * follows: - * - * change percent - * 1 5 - * 0 78 - * -1 16 - * -2 0.6 - * -3 0.04 - * -4 0.002 - * - * The histogram of iterations is (m = number of iterations estimating - * alp1 directly, n = number of iterations estimating via omg12, total - * number of trials = 148605): - * - * iter m n - * 0 148 186 - * 1 13046 13845 - * 2 93315 102225 - * 3 36189 32341 - * 4 5396 7 - * 5 455 1 - * 6 56 0 - * - * Because omg12 is near pi, estimate work with omg12a = pi - omg12 */ - real k = Astroid(x, y); - real - omg12a = lamscale * ( g->f >= 0 ? -x * k/(1 + k) : -y * (1 + k)/k ); - somg12 = sin(omg12a); comg12 = -cos(omg12a); - /* Update spherical estimate of alp1 using omg12 instead of lam12 */ - salp1 = cbet2 * somg12; - calp1 = sbet12a - cbet2 * sbet1 * sq(somg12) / (1 - comg12); - } - } - /* Sanity check on starting guess. Backwards check allows NaN through. */ - if (!(salp1 <= 0)) - norm2(&salp1, &calp1); - else { - salp1 = 1; calp1 = 0; - } - - *psalp1 = salp1; - *pcalp1 = calp1; - if (shortline) - *pdnm = dnm; - if (sig12 >= 0) { - *psalp2 = salp2; - *pcalp2 = calp2; - } - return sig12; -} - -real Lambda12(const struct geod_geodesic* g, - real sbet1, real cbet1, real dn1, - real sbet2, real cbet2, real dn2, - real salp1, real calp1, - real slam120, real clam120, - real* psalp2, real* pcalp2, - real* psig12, - real* pssig1, real* pcsig1, - real* pssig2, real* pcsig2, - real* peps, - real* pdomg12, - boolx diffp, real* pdlam12, - /* Scratch area of the right size */ - real Ca[]) { - real salp2 = 0, calp2 = 0, sig12 = 0, - ssig1 = 0, csig1 = 0, ssig2 = 0, csig2 = 0, eps = 0, - domg12 = 0, dlam12 = 0; - real salp0, calp0; - real somg1, comg1, somg2, comg2, somg12, comg12, lam12; - real B312, eta, k2; - - if (sbet1 == 0 && calp1 == 0) - /* Break degeneracy of equatorial line. This case has already been - * handled. */ - calp1 = -tiny; - - /* sin(alp1) * cos(bet1) = sin(alp0) */ - salp0 = salp1 * cbet1; - calp0 = hypotx(calp1, salp1 * sbet1); /* calp0 > 0 */ - - /* tan(bet1) = tan(sig1) * cos(alp1) - * tan(omg1) = sin(alp0) * tan(sig1) = tan(omg1)=tan(alp1)*sin(bet1) */ - ssig1 = sbet1; somg1 = salp0 * sbet1; - csig1 = comg1 = calp1 * cbet1; - norm2(&ssig1, &csig1); - /* norm2(&somg1, &comg1); -- don't need to normalize! */ - - /* Enforce symmetries in the case abs(bet2) = -bet1. Need to be careful - * about this case, since this can yield singularities in the Newton - * iteration. - * sin(alp2) * cos(bet2) = sin(alp0) */ - salp2 = cbet2 != cbet1 ? salp0 / cbet2 : salp1; - /* calp2 = sqrt(1 - sq(salp2)) - * = sqrt(sq(calp0) - sq(sbet2)) / cbet2 - * and subst for calp0 and rearrange to give (choose positive sqrt - * to give alp2 in [0, pi/2]). */ - calp2 = cbet2 != cbet1 || fabs(sbet2) != -sbet1 ? - sqrt(sq(calp1 * cbet1) + - (cbet1 < -sbet1 ? - (cbet2 - cbet1) * (cbet1 + cbet2) : - (sbet1 - sbet2) * (sbet1 + sbet2))) / cbet2 : - fabs(calp1); - /* tan(bet2) = tan(sig2) * cos(alp2) - * tan(omg2) = sin(alp0) * tan(sig2). */ - ssig2 = sbet2; somg2 = salp0 * sbet2; - csig2 = comg2 = calp2 * cbet2; - norm2(&ssig2, &csig2); - /* norm2(&somg2, &comg2); -- don't need to normalize! */ - - /* sig12 = sig2 - sig1, limit to [0, pi] */ - sig12 = atan2(maxx((real)(0), csig1 * ssig2 - ssig1 * csig2), - csig1 * csig2 + ssig1 * ssig2); - - /* omg12 = omg2 - omg1, limit to [0, pi] */ - somg12 = maxx((real)(0), comg1 * somg2 - somg1 * comg2); - comg12 = comg1 * comg2 + somg1 * somg2; - /* eta = omg12 - lam120 */ - eta = atan2(somg12 * clam120 - comg12 * slam120, - comg12 * clam120 + somg12 * slam120); - k2 = sq(calp0) * g->ep2; - eps = k2 / (2 * (1 + sqrt(1 + k2)) + k2); - C3f(g, eps, Ca); - B312 = (SinCosSeries(TRUE, ssig2, csig2, Ca, nC3-1) - - SinCosSeries(TRUE, ssig1, csig1, Ca, nC3-1)); - domg12 = -g->f * A3f(g, eps) * salp0 * (sig12 + B312); - lam12 = eta + domg12; - - if (diffp) { - if (calp2 == 0) - dlam12 = - 2 * g->f1 * dn1 / sbet1; - else { - Lengths(g, eps, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2, - cbet1, cbet2, 0, &dlam12, 0, 0, 0, Ca); - dlam12 *= g->f1 / (calp2 * cbet2); - } - } - - *psalp2 = salp2; - *pcalp2 = calp2; - *psig12 = sig12; - *pssig1 = ssig1; - *pcsig1 = csig1; - *pssig2 = ssig2; - *pcsig2 = csig2; - *peps = eps; - *pdomg12 = domg12; - if (diffp) - *pdlam12 = dlam12; - - return lam12; -} - -real A3f(const struct geod_geodesic* g, real eps) { - /* Evaluate A3 */ - return polyval(nA3 - 1, g->A3x, eps); -} - -void C3f(const struct geod_geodesic* g, real eps, real c[]) { - /* Evaluate C3 coeffs - * Elements c[1] through c[nC3 - 1] are set */ - real mult = 1; - int o = 0, l; - for (l = 1; l < nC3; ++l) { /* l is index of C3[l] */ - int m = nC3 - l - 1; /* order of polynomial in eps */ - mult *= eps; - c[l] = mult * polyval(m, g->C3x + o, eps); - o += m + 1; - } -} - -void C4f(const struct geod_geodesic* g, real eps, real c[]) { - /* Evaluate C4 coeffs - * Elements c[0] through c[nC4 - 1] are set */ - real mult = 1; - int o = 0, l; - for (l = 0; l < nC4; ++l) { /* l is index of C4[l] */ - int m = nC4 - l - 1; /* order of polynomial in eps */ - c[l] = mult * polyval(m, g->C4x + o, eps); - o += m + 1; - mult *= eps; - } -} - -/* The scale factor A1-1 = mean value of (d/dsigma)I1 - 1 */ -real A1m1f(real eps) { - static const real coeff[] = { - /* (1-eps)*A1-1, polynomial in eps2 of order 3 */ - 1, 4, 64, 0, 256, - }; - int m = nA1/2; - real t = polyval(m, coeff, sq(eps)) / coeff[m + 1]; - return (t + eps) / (1 - eps); -} - -/* The coefficients C1[l] in the Fourier expansion of B1 */ -void C1f(real eps, real c[]) { - static const real coeff[] = { - /* C1[1]/eps^1, polynomial in eps2 of order 2 */ - -1, 6, -16, 32, - /* C1[2]/eps^2, polynomial in eps2 of order 2 */ - -9, 64, -128, 2048, - /* C1[3]/eps^3, polynomial in eps2 of order 1 */ - 9, -16, 768, - /* C1[4]/eps^4, polynomial in eps2 of order 1 */ - 3, -5, 512, - /* C1[5]/eps^5, polynomial in eps2 of order 0 */ - -7, 1280, - /* C1[6]/eps^6, polynomial in eps2 of order 0 */ - -7, 2048, - }; - real - eps2 = sq(eps), - d = eps; - int o = 0, l; - for (l = 1; l <= nC1; ++l) { /* l is index of C1p[l] */ - int m = (nC1 - l) / 2; /* order of polynomial in eps^2 */ - c[l] = d * polyval(m, coeff + o, eps2) / coeff[o + m + 1]; - o += m + 2; - d *= eps; - } -} - -/* The coefficients C1p[l] in the Fourier expansion of B1p */ -void C1pf(real eps, real c[]) { - static const real coeff[] = { - /* C1p[1]/eps^1, polynomial in eps2 of order 2 */ - 205, -432, 768, 1536, - /* C1p[2]/eps^2, polynomial in eps2 of order 2 */ - 4005, -4736, 3840, 12288, - /* C1p[3]/eps^3, polynomial in eps2 of order 1 */ - -225, 116, 384, - /* C1p[4]/eps^4, polynomial in eps2 of order 1 */ - -7173, 2695, 7680, - /* C1p[5]/eps^5, polynomial in eps2 of order 0 */ - 3467, 7680, - /* C1p[6]/eps^6, polynomial in eps2 of order 0 */ - 38081, 61440, - }; - real - eps2 = sq(eps), - d = eps; - int o = 0, l; - for (l = 1; l <= nC1p; ++l) { /* l is index of C1p[l] */ - int m = (nC1p - l) / 2; /* order of polynomial in eps^2 */ - c[l] = d * polyval(m, coeff + o, eps2) / coeff[o + m + 1]; - o += m + 2; - d *= eps; - } -} - -/* The scale factor A2-1 = mean value of (d/dsigma)I2 - 1 */ -real A2m1f(real eps) { - static const real coeff[] = { - /* (eps+1)*A2-1, polynomial in eps2 of order 3 */ - -11, -28, -192, 0, 256, - }; - int m = nA2/2; - real t = polyval(m, coeff, sq(eps)) / coeff[m + 1]; - return (t - eps) / (1 + eps); -} - -/* The coefficients C2[l] in the Fourier expansion of B2 */ -void C2f(real eps, real c[]) { - static const real coeff[] = { - /* C2[1]/eps^1, polynomial in eps2 of order 2 */ - 1, 2, 16, 32, - /* C2[2]/eps^2, polynomial in eps2 of order 2 */ - 35, 64, 384, 2048, - /* C2[3]/eps^3, polynomial in eps2 of order 1 */ - 15, 80, 768, - /* C2[4]/eps^4, polynomial in eps2 of order 1 */ - 7, 35, 512, - /* C2[5]/eps^5, polynomial in eps2 of order 0 */ - 63, 1280, - /* C2[6]/eps^6, polynomial in eps2 of order 0 */ - 77, 2048, - }; - real - eps2 = sq(eps), - d = eps; - int o = 0, l; - for (l = 1; l <= nC2; ++l) { /* l is index of C2[l] */ - int m = (nC2 - l) / 2; /* order of polynomial in eps^2 */ - c[l] = d * polyval(m, coeff + o, eps2) / coeff[o + m + 1]; - o += m + 2; - d *= eps; - } -} - -/* The scale factor A3 = mean value of (d/dsigma)I3 */ -void A3coeff(struct geod_geodesic* g) { - static const real coeff[] = { - /* A3, coeff of eps^5, polynomial in n of order 0 */ - -3, 128, - /* A3, coeff of eps^4, polynomial in n of order 1 */ - -2, -3, 64, - /* A3, coeff of eps^3, polynomial in n of order 2 */ - -1, -3, -1, 16, - /* A3, coeff of eps^2, polynomial in n of order 2 */ - 3, -1, -2, 8, - /* A3, coeff of eps^1, polynomial in n of order 1 */ - 1, -1, 2, - /* A3, coeff of eps^0, polynomial in n of order 0 */ - 1, 1, - }; - int o = 0, k = 0, j; - for (j = nA3 - 1; j >= 0; --j) { /* coeff of eps^j */ - int m = nA3 - j - 1 < j ? nA3 - j - 1 : j; /* order of polynomial in n */ - g->A3x[k++] = polyval(m, coeff + o, g->n) / coeff[o + m + 1]; - o += m + 2; - } -} - -/* The coefficients C3[l] in the Fourier expansion of B3 */ -void C3coeff(struct geod_geodesic* g) { - static const real coeff[] = { - /* C3[1], coeff of eps^5, polynomial in n of order 0 */ - 3, 128, - /* C3[1], coeff of eps^4, polynomial in n of order 1 */ - 2, 5, 128, - /* C3[1], coeff of eps^3, polynomial in n of order 2 */ - -1, 3, 3, 64, - /* C3[1], coeff of eps^2, polynomial in n of order 2 */ - -1, 0, 1, 8, - /* C3[1], coeff of eps^1, polynomial in n of order 1 */ - -1, 1, 4, - /* C3[2], coeff of eps^5, polynomial in n of order 0 */ - 5, 256, - /* C3[2], coeff of eps^4, polynomial in n of order 1 */ - 1, 3, 128, - /* C3[2], coeff of eps^3, polynomial in n of order 2 */ - -3, -2, 3, 64, - /* C3[2], coeff of eps^2, polynomial in n of order 2 */ - 1, -3, 2, 32, - /* C3[3], coeff of eps^5, polynomial in n of order 0 */ - 7, 512, - /* C3[3], coeff of eps^4, polynomial in n of order 1 */ - -10, 9, 384, - /* C3[3], coeff of eps^3, polynomial in n of order 2 */ - 5, -9, 5, 192, - /* C3[4], coeff of eps^5, polynomial in n of order 0 */ - 7, 512, - /* C3[4], coeff of eps^4, polynomial in n of order 1 */ - -14, 7, 512, - /* C3[5], coeff of eps^5, polynomial in n of order 0 */ - 21, 2560, - }; - int o = 0, k = 0, l, j; - for (l = 1; l < nC3; ++l) { /* l is index of C3[l] */ - for (j = nC3 - 1; j >= l; --j) { /* coeff of eps^j */ - int m = nC3 - j - 1 < j ? nC3 - j - 1 : j; /* order of polynomial in n */ - g->C3x[k++] = polyval(m, coeff + o, g->n) / coeff[o + m + 1]; - o += m + 2; - } - } -} - -/* The coefficients C4[l] in the Fourier expansion of I4 */ -void C4coeff(struct geod_geodesic* g) { - static const real coeff[] = { - /* C4[0], coeff of eps^5, polynomial in n of order 0 */ - 97, 15015, - /* C4[0], coeff of eps^4, polynomial in n of order 1 */ - 1088, 156, 45045, - /* C4[0], coeff of eps^3, polynomial in n of order 2 */ - -224, -4784, 1573, 45045, - /* C4[0], coeff of eps^2, polynomial in n of order 3 */ - -10656, 14144, -4576, -858, 45045, - /* C4[0], coeff of eps^1, polynomial in n of order 4 */ - 64, 624, -4576, 6864, -3003, 15015, - /* C4[0], coeff of eps^0, polynomial in n of order 5 */ - 100, 208, 572, 3432, -12012, 30030, 45045, - /* C4[1], coeff of eps^5, polynomial in n of order 0 */ - 1, 9009, - /* C4[1], coeff of eps^4, polynomial in n of order 1 */ - -2944, 468, 135135, - /* C4[1], coeff of eps^3, polynomial in n of order 2 */ - 5792, 1040, -1287, 135135, - /* C4[1], coeff of eps^2, polynomial in n of order 3 */ - 5952, -11648, 9152, -2574, 135135, - /* C4[1], coeff of eps^1, polynomial in n of order 4 */ - -64, -624, 4576, -6864, 3003, 135135, - /* C4[2], coeff of eps^5, polynomial in n of order 0 */ - 8, 10725, - /* C4[2], coeff of eps^4, polynomial in n of order 1 */ - 1856, -936, 225225, - /* C4[2], coeff of eps^3, polynomial in n of order 2 */ - -8448, 4992, -1144, 225225, - /* C4[2], coeff of eps^2, polynomial in n of order 3 */ - -1440, 4160, -4576, 1716, 225225, - /* C4[3], coeff of eps^5, polynomial in n of order 0 */ - -136, 63063, - /* C4[3], coeff of eps^4, polynomial in n of order 1 */ - 1024, -208, 105105, - /* C4[3], coeff of eps^3, polynomial in n of order 2 */ - 3584, -3328, 1144, 315315, - /* C4[4], coeff of eps^5, polynomial in n of order 0 */ - -128, 135135, - /* C4[4], coeff of eps^4, polynomial in n of order 1 */ - -2560, 832, 405405, - /* C4[5], coeff of eps^5, polynomial in n of order 0 */ - 128, 99099, - }; - int o = 0, k = 0, l, j; - for (l = 0; l < nC4; ++l) { /* l is index of C4[l] */ - for (j = nC4 - 1; j >= l; --j) { /* coeff of eps^j */ - int m = nC4 - j - 1; /* order of polynomial in n */ - g->C4x[k++] = polyval(m, coeff + o, g->n) / coeff[o + m + 1]; - o += m + 2; - } - } -} - -int transit(real lon1, real lon2) { - real lon12; - /* Return 1 or -1 if crossing prime meridian in east or west direction. - * Otherwise return zero. */ - /* Compute lon12 the same way as Geodesic::Inverse. */ - lon1 = AngNormalize(lon1); - lon2 = AngNormalize(lon2); - lon12 = AngDiff(lon1, lon2, 0); - return lon1 <= 0 && lon2 > 0 && lon12 > 0 ? 1 : - (lon2 <= 0 && lon1 > 0 && lon12 < 0 ? -1 : 0); -} - -int transitdirect(real lon1, real lon2) { -#if HAVE_C99_MATH - lon1 = remainder(lon1, (real)(720)); - lon2 = remainder(lon2, (real)(720)); - return ( (lon2 <= 0 && lon2 > -360 ? 1 : 0) - - (lon1 <= 0 && lon1 > -360 ? 1 : 0) ); -#else - lon1 = fmod(lon1, (real)(720)); - lon2 = fmod(lon2, (real)(720)); - return ( ((lon2 <= 0 && lon2 > -360) || lon2 > 360 ? 1 : 0) - - ((lon1 <= 0 && lon1 > -360) || lon1 > 360 ? 1 : 0) ); -#endif -} - -void accini(real s[]) { - /* Initialize an accumulator; this is an array with two elements. */ - s[0] = s[1] = 0; -} - -void acccopy(const real s[], real t[]) { - /* Copy an accumulator; t = s. */ - t[0] = s[0]; t[1] = s[1]; -} - -void accadd(real s[], real y) { - /* Add y to an accumulator. */ - real u, z = sumx(y, s[1], &u); - s[0] = sumx(z, s[0], &s[1]); - if (s[0] == 0) - s[0] = u; - else - s[1] = s[1] + u; -} - -real accsum(const real s[], real y) { - /* Return accumulator + y (but don't add to accumulator). */ - real t[2]; - acccopy(s, t); - accadd(t, y); - return t[0]; -} - -void accneg(real s[]) { - /* Negate an accumulator. */ - s[0] = -s[0]; s[1] = -s[1]; -} - -void geod_polygon_init(struct geod_polygon* p, boolx polylinep) { - p->polyline = (polylinep != 0); - geod_polygon_clear(p); -} - -void geod_polygon_clear(struct geod_polygon* p) { - p->lat0 = p->lon0 = p->lat = p->lon = NaN; - accini(p->P); - accini(p->A); - p->num = p->crossings = 0; -} - -void geod_polygon_addpoint(const struct geod_geodesic* g, - struct geod_polygon* p, - real lat, real lon) { - lon = AngNormalize(lon); - if (p->num == 0) { - p->lat0 = p->lat = lat; - p->lon0 = p->lon = lon; - } else { - real s12, S12 = 0; /* Initialize S12 to stop Visual Studio warning */ - geod_geninverse(g, p->lat, p->lon, lat, lon, - &s12, 0, 0, 0, 0, 0, p->polyline ? 0 : &S12); - accadd(p->P, s12); - if (!p->polyline) { - accadd(p->A, S12); - p->crossings += transit(p->lon, lon); - } - p->lat = lat; p->lon = lon; - } - ++p->num; -} - -void geod_polygon_addedge(const struct geod_geodesic* g, - struct geod_polygon* p, - real azi, real s) { - if (p->num) { /* Do nothing is num is zero */ - /* Initialize S12 to stop Visual Studio warning. Initialization of lat and - * lon is to make CLang static analyzer happy. */ - real lat = 0, lon = 0, S12 = 0; - geod_gendirect(g, p->lat, p->lon, azi, GEOD_LONG_UNROLL, s, - &lat, &lon, 0, - 0, 0, 0, 0, p->polyline ? 0 : &S12); - accadd(p->P, s); - if (!p->polyline) { - accadd(p->A, S12); - p->crossings += transitdirect(p->lon, lon); - } - p->lat = lat; p->lon = lon; - ++p->num; - } -} - -unsigned geod_polygon_compute(const struct geod_geodesic* g, - const struct geod_polygon* p, - boolx reverse, boolx sign, - real* pA, real* pP) { - real s12, S12, t[2], area0; - int crossings; - if (p->num < 2) { - if (pP) *pP = 0; - if (!p->polyline && pA) *pA = 0; - return p->num; - } - if (p->polyline) { - if (pP) *pP = p->P[0]; - return p->num; - } - geod_geninverse(g, p->lat, p->lon, p->lat0, p->lon0, - &s12, 0, 0, 0, 0, 0, &S12); - if (pP) *pP = accsum(p->P, s12); - acccopy(p->A, t); - accadd(t, S12); - crossings = p->crossings + transit(p->lon, p->lon0); - area0 = 4 * pi * g->c2; - if (crossings & 1) - accadd(t, (t[0] < 0 ? 1 : -1) * area0/2); - /* area is with the clockwise sense. If !reverse convert to - * counter-clockwise convention. */ - if (!reverse) - accneg(t); - /* If sign put area in (-area0/2, area0/2], else put area in [0, area0) */ - if (sign) { - if (t[0] > area0/2) - accadd(t, -area0); - else if (t[0] <= -area0/2) - accadd(t, +area0); - } else { - if (t[0] >= area0) - accadd(t, -area0); - else if (t[0] < 0) - accadd(t, +area0); - } - if (pA) *pA = 0 + t[0]; - return p->num; -} - -unsigned geod_polygon_testpoint(const struct geod_geodesic* g, - const struct geod_polygon* p, - real lat, real lon, - boolx reverse, boolx sign, - real* pA, real* pP) { - real perimeter, tempsum, area0; - int crossings, i; - unsigned num = p->num + 1; - if (num == 1) { - if (pP) *pP = 0; - if (!p->polyline && pA) *pA = 0; - return num; - } - perimeter = p->P[0]; - tempsum = p->polyline ? 0 : p->A[0]; - crossings = p->crossings; - for (i = 0; i < (p->polyline ? 1 : 2); ++i) { - real s12, S12 = 0; /* Initialize S12 to stop Visual Studio warning */ - geod_geninverse(g, - i == 0 ? p->lat : lat, i == 0 ? p->lon : lon, - i != 0 ? p->lat0 : lat, i != 0 ? p->lon0 : lon, - &s12, 0, 0, 0, 0, 0, p->polyline ? 0 : &S12); - perimeter += s12; - if (!p->polyline) { - tempsum += S12; - crossings += transit(i == 0 ? p->lon : lon, - i != 0 ? p->lon0 : lon); - } - } - - if (pP) *pP = perimeter; - if (p->polyline) - return num; - - area0 = 4 * pi * g->c2; - if (crossings & 1) - tempsum += (tempsum < 0 ? 1 : -1) * area0/2; - /* area is with the clockwise sense. If !reverse convert to - * counter-clockwise convention. */ - if (!reverse) - tempsum *= -1; - /* If sign put area in (-area0/2, area0/2], else put area in [0, area0) */ - if (sign) { - if (tempsum > area0/2) - tempsum -= area0; - else if (tempsum <= -area0/2) - tempsum += area0; - } else { - if (tempsum >= area0) - tempsum -= area0; - else if (tempsum < 0) - tempsum += area0; - } - if (pA) *pA = 0 + tempsum; - return num; -} - -unsigned geod_polygon_testedge(const struct geod_geodesic* g, - const struct geod_polygon* p, - real azi, real s, - boolx reverse, boolx sign, - real* pA, real* pP) { - real perimeter, tempsum, area0; - int crossings; - unsigned num = p->num + 1; - if (num == 1) { /* we don't have a starting point! */ - if (pP) *pP = NaN; - if (!p->polyline && pA) *pA = NaN; - return 0; - } - perimeter = p->P[0] + s; - if (p->polyline) { - if (pP) *pP = perimeter; - return num; - } - - tempsum = p->A[0]; - crossings = p->crossings; - { - /* Initialization of lat, lon, and S12 is to make CLang static analyzer - happy. */ - real lat = 0, lon = 0, s12, S12 = 0; - geod_gendirect(g, p->lat, p->lon, azi, GEOD_LONG_UNROLL, s, - &lat, &lon, 0, - 0, 0, 0, 0, &S12); - tempsum += S12; - crossings += transitdirect(p->lon, lon); - geod_geninverse(g, lat, lon, p->lat0, p->lon0, - &s12, 0, 0, 0, 0, 0, &S12); - perimeter += s12; - tempsum += S12; - crossings += transit(lon, p->lon0); - } - - area0 = 4 * pi * g->c2; - if (crossings & 1) - tempsum += (tempsum < 0 ? 1 : -1) * area0/2; - /* area is with the clockwise sense. If !reverse convert to - * counter-clockwise convention. */ - if (!reverse) - tempsum *= -1; - /* If sign put area in (-area0/2, area0/2], else put area in [0, area0) */ - if (sign) { - if (tempsum > area0/2) - tempsum -= area0; - else if (tempsum <= -area0/2) - tempsum += area0; - } else { - if (tempsum >= area0) - tempsum -= area0; - else if (tempsum < 0) - tempsum += area0; - } - if (pP) *pP = perimeter; - if (pA) *pA = 0 + tempsum; - return num; -} - -void geod_polygonarea(const struct geod_geodesic* g, - real lats[], real lons[], int n, - real* pA, real* pP) { - int i; - struct geod_polygon p; - geod_polygon_init(&p, FALSE); - for (i = 0; i < n; ++i) - geod_polygon_addpoint(g, &p, lats[i], lons[i]); - geod_polygon_compute(g, &p, FALSE, TRUE, pA, pP); -} - -/** @endcond */ |
