diff options
| author | Charles Karney <charles.karney@sri.com> | 2019-09-17 10:29:53 -0400 |
|---|---|---|
| committer | Charles Karney <charles.karney@sri.com> | 2019-09-17 10:29:53 -0400 |
| commit | 5fe21c3e2b88e8248c79311401db03124e88bc52 (patch) | |
| tree | dbf302a888dd4aa286af6f4d5a504752632e1da5 /src/math.cpp | |
| parent | d2f661fc99615a33d72bb0120a14bca2aaced221 (diff) | |
| download | PROJ-5fe21c3e2b88e8248c79311401db03124e88bc52.tar.gz PROJ-5fe21c3e2b88e8248c79311401db03124e88bc52.zip | |
Add atanh, copysign, cbrt, remainder, remquo to math.cpp.
The supported C99 math functions provided by math.cpp are thus
hypot
log1p
asinh
atanh
copysign
cbrt
remainder
remquo
round
lround
Make compiler checks in CMakeLists.txt and configure.ac consistent with
this set.
Make geodesic.c use the math.cpp defined (instead of the internally
defined) versions of
hypot
atanh
copysign
cbrt
This is keyed off the presence of the PROJ_LIB macro. I had at one
time
https://github.com/OSGeo/PROJ/pull/1425
suggested supplying an additional macro PROJ_COMPILATION when compiling
geodesic.c. However, PROJ_LIB seems to fill the bill OK.
The *next* version of geodesic.c (due out in a few weeks) will also use
remainder
remquo
All of this is only of concern for C compilers without C99 support. So
this may become an historical footnote at some point.
Diffstat (limited to 'src/math.cpp')
| -rw-r--r-- | src/math.cpp | 131 |
1 files changed, 102 insertions, 29 deletions
diff --git a/src/math.cpp b/src/math.cpp index 540ab9eb..0ec4f57f 100644 --- a/src/math.cpp +++ b/src/math.cpp @@ -44,64 +44,137 @@ int pj_isnan (double x) { #if !(defined(HAVE_C99_MATH) && HAVE_C99_MATH) +/* Define C99 compatible versions of + * hypot + * log1p + * asinh + * atanh + * copysign + * cbrt + * remainder + * remquo + * round + * lround + */ + /* Compute hypotenuse */ double pj_hypot(double x, double y) { - x = fabs(x); - y = fabs(y); - if ( x < y ) { - x /= y; - return ( y * sqrt( 1. + x * x ) ); - } else { - y /= (x != 0.0 ? x : 1.0); - return ( x * sqrt( 1. + y * y ) ); - } + x = fabs(x); + y = fabs(y); + if (x < y) { + x /= y; /* y is nonzero */ + return y * sqrt(1 + x * x); + } else { + y /= (x ? x : 1); + return x * sqrt(1 + y * y); + } } /* Compute log(1+x) accurately */ double pj_log1p(double x) { - volatile double - y = 1 + x, - z = y - 1; - /* Here's the explanation for this magic: y = 1 + z, exactly, and z - * approx x, thus log(y)/z (which is nearly constant near z = 0) returns - * a good approximation to the true log(1 + x)/x. The multiplication x * - * (log(y)/z) introduces little additional error. */ - return z == 0 ? x : x * log(y) / z; + volatile double + y = 1 + x, + z = y - 1; + /* Here's the explanation for this magic: y = 1 + z, exactly, and z + * approx x, thus log(y)/z (which is nearly constant near z = 0) returns + * a good approximation to the true log(1 + x)/x. The multiplication x * + * (log(y)/z) introduces little additional error. */ + return z == 0 ? x : x * log(y) / z; } /* Compute asinh(x) accurately */ double pj_asinh(double x) { - double y = fabs(x); /* Enforce odd parity */ - y = log1p(y * (1 + y/(hypot(1.0, y) + 1))); - return x > 0 ? y : (x < 0 ? -y : x); + double y = fabs(x); /* Enforce odd parity */ + y = pj_log1p(y * (1 + y/(pj_hypot(1.0, y) + 1))); + return x > 0 ? y : (x < 0 ? -y : x); /* asinh(-0.0) = -0.0 */ +} + +/* Compute atanh(x) accurately */ +double pj_atanh(double x) { + double y = fabs(x); /* Enforce odd parity */ + y = pj_log1p(2 * y/(1 - y))/2; + return x > 0 ? y : (x < 0 ? -y : x); /* atanh(-0.0) = -0.0 */ +} + +/* Implement copysign(x, y) */ +double pj_copysign(double x, double y) { + /* 1/y trick to get the sign of -0.0 */ + return fabs(x) * (y < 0 || (y == 0 && 1/y < 0) ? -1 : 1); +} + +/* Implement cbrt(x) */ +double pj_cbrt(double x) { + double y = pow(fabs(x), 1/3.0); /* Return the real cube root */ + return x > 0 ? y : (x < 0 ? -y : x); /* cbrt(-0.0) = -0.0 */ +} + +/* Implement remainder(x, y) with ties to even */ +double pj_remainder(double x, double y) { + double z; + y = fabs(y); /* The result doesn't depend on the sign of y */ + z = fmod(x, y); + if (z == 0) + /* This shouldn't be necessary. However, before version 14 (2015), + * Visual Studio had problems dealing with -0.0. Specifically + * VC 10,11,12 and 32-bit compile: fmod(-0.0, 360.0) -> +0.0 + * python 2.7 on Windows 32-bit machines has the same problem. */ + z = pj_copysign(z, x); + else if (2 * fabs(z) == y) + z -= fmod(x, 2 * y) - z; /* Implement ties to even */ + else if (2 * fabs(z) > y) + z += (z < 0 ? y : -y); /* Fold remaining cases to (-y/2, y/2) */ + return z; +} + +/* Implement remquo(x, y, n) with n giving low 3 bits + sign of x/y */ +double pj_remquo(double x, double y, int* n) { + double z = pj_remainder(x, y); + if (n) { + double + a = pj_remainder(x, 2 * y), + b = pj_remainder(x, 4 * y), + c = pj_remainder(x, 8 * y); + *n = (a > z ? 1 : (a < z ? -1 : 0)); + *n += (b > a ? 2 : (b < a ? -2 : 0)); + *n += (c > b ? 4 : (c < b ? -4 : 0)); + if (y < 0) *n *= -1; + if (y != 0) { + if (x/y > 0 && *n <= 0) + *n += 8; + else if (x/y < 0 && *n >= 0) + *n -= 8; + } + } + return z; } +/* Implement round(x) */ double pj_round(double x) { /* The handling of corner cases is copied from boost; see * https://github.com/boostorg/math/pull/8 * with improvements to return -0.0 when appropriate */ double t; - if (x == 0) - return x; /* Retain sign of 0 */ - else if (0 < x && x < 0.5) + if (0 < x && x < 0.5) return +0.0; else if (0 > x && x > -0.5) return -0.0; - else if (x > 0) { + else if (x > 0) { t = ceil(x); return 0.5 < t - x ? t - 1 : t; - } else { /* Includes NaN */ + } else if (x < 0) { t = floor(x); return 0.5 < x - t ? t + 1 : t; - } + } else /* +/-0 and NaN */ + return x; /* retain sign of 0 */ } +/* Implement lround(x) */ long pj_lround(double x) { /* Default value for overflow + NaN + (x == LONG_MIN) */ long r = LONG_MIN; - x = round(x); - if (fabs(x) < -(double)LONG_MIN) /* Assume (double)LONG_MIN is exact */ - r = (int)x; + x = pj_round(x); + if (fabs(x) < -(double)r) /* Assume (double)LONG_MIN is exact */ + r = (long)x; return r; } |
