aboutsummaryrefslogtreecommitdiff
path: root/src/projections/tobmerc.cpp
diff options
context:
space:
mode:
authorCharles Karney <charles@karney.com>2020-11-01 06:53:02 -0500
committerGitHub <noreply@github.com>2020-11-01 06:53:02 -0500
commitcccd65e50d1143a1119afedae97cec5a6b9397e9 (patch)
tree4e5af1fb8faab2c049d065a2d6d1e5e473321196 /src/projections/tobmerc.cpp
parentb7bf499b8449a61cdc24dcdaa0bf035f57af1b3c (diff)
parent692fc26b6d494aeaa85658314bc020a5cd6da7a1 (diff)
downloadPROJ-cccd65e50d1143a1119afedae97cec5a6b9397e9.tar.gz
PROJ-cccd65e50d1143a1119afedae97cec5a6b9397e9.zip
Merge pull request #2397 from cffk/merc-update
Update Mercator projection, more accurate, faster
Diffstat (limited to 'src/projections/tobmerc.cpp')
-rw-r--r--src/projections/tobmerc.cpp19
1 files changed, 8 insertions, 11 deletions
diff --git a/src/projections/tobmerc.cpp b/src/projections/tobmerc.cpp
index a1616036..f05a9b6b 100644
--- a/src/projections/tobmerc.cpp
+++ b/src/projections/tobmerc.cpp
@@ -9,27 +9,24 @@
PROJ_HEAD(tobmerc, "Tobler-Mercator") "\n\tCyl, Sph";
-#define EPS10 1.e-10
-static double logtanpfpim1(double x) { /* log(tan(x/2 + M_FORTPI)) */
- if (fabs(x) <= DBL_EPSILON) {
- /* tan(M_FORTPI + .5 * x) can be approximated by 1.0 + x */
- return log1p(x);
- }
- return log(tan(M_FORTPI + .5 * x));
-}
-
static PJ_XY tobmerc_s_forward (PJ_LP lp, PJ *P) { /* Spheroidal, forward */
PJ_XY xy = {0.0, 0.0};
double cosphi;
- if (fabs(fabs(lp.phi) - M_HALFPI) <= EPS10) {
+ if (fabs(lp.phi) >= M_HALFPI) {
+ // builtins.gie tests "Test expected failure at the poles:". However
+ // given that M_HALFPI is strictly less than pi/2 in double precision,
+ // it's not clear why shouldn't just return a large result for xy.y (and
+ // it's not even that large, merely 38.025...). Even if the logic was
+ // such that phi was strictly equal to pi/2, allowing xy.y = inf would be
+ // a reasonable result.
proj_errno_set(P, PJD_ERR_TOLERANCE_CONDITION);
return xy;
}
cosphi = cos(lp.phi);
xy.x = P->k0 * lp.lam * cosphi * cosphi;
- xy.y = P->k0 * logtanpfpim1(lp.phi);
+ xy.y = P->k0 * asinh(tan(lp.phi));
return xy;
}