aboutsummaryrefslogtreecommitdiff
path: root/man/man3/geodesic.3
diff options
context:
space:
mode:
Diffstat (limited to 'man/man3/geodesic.3')
-rw-r--r--man/man3/geodesic.342
1 files changed, 26 insertions, 16 deletions
diff --git a/man/man3/geodesic.3 b/man/man3/geodesic.3
index e409079d..717be2b9 100644
--- a/man/man3/geodesic.3
+++ b/man/man3/geodesic.3
@@ -1,6 +1,6 @@
.\" @(#)geodesic.3
-.nr LL 6.5i
-.TH GEODESIC 3 "2013/02/27 Rel. 4.8"
+.nr LL 7.0i
+.TH GEODESIC 3 "2013/07/11 Rel. 4.9.0"
.ad b
.hy 1
.SH NAME
@@ -32,13 +32,13 @@ This library is a port of the geodesic routines in the C++ library,
GeographicLib, to C. It solves the direct and inverse geodesic problems
on an ellipsoid of revolution. In addition, the reduced length of a
geodesic and the area between a geodesic and the equator can be
-computed. The results are accurate to round off for |\fIf\fR| < 1/50.
-Note that the geodesic routines measure angles (latitudes, longitudes,
-and azimuths) in degrees, unlike the rest of the \fBproj\fR library,
-which uses radians. The documentation for this library is included in
-geodesic.h. A formatted version of the documentation is available at
-.br
-http://geographiclib.sf.net/html/C/index.html
+computed. The results are accurate to round off for |\fIf\fR| < 1/50,
+where \fIf\fR is the flattening. Note that the geodesic routines
+measure angles (latitudes, longitudes, and azimuths) in degrees, unlike
+the rest of the \fBproj\fR library, which uses radians. The
+documentation for this library is included in geodesic.h. A formatted
+version of the documentation is available at
+http://geographiclib.sf.net/1.32/C
.SH EXAMPLE
The following program reads in lines with the coordinates for two points
in decimal degrees (\fIlat1\fR, \fIlon1\fR, \fIlat2\fR, \fIlon2\fR) and
@@ -70,18 +70,28 @@ int main() {
.SH LIBRARY
libproj.a \- library of projections and support procedures
.SH SEE ALSO
-.B geod(1)
-.br
-The \fBGeodesicExact\fR class in \fBGeographicLib\fR,
-http://geographiclib.sf.net. This solves the geodesic problems in terms
-of elliptic integrals; the results are accurate for arbitrary \fIf\fR.
+Full online documentation for \fBgeodesic(3)\fR,
.br
+http://geographiclib.sf.net/1.32/C
+.PP
+.B geod(1)
+.PP
+\fBGeographicLib\fR, http://geographiclib.sf.net
+.PP
+The \fBGeodesicExact\fR class in GeographicLib solves the geodesic
+problems in terms of elliptic integrals; the results are accurate for
+arbitrary \fIf\fR.
+.PP
C. F. F. Karney, \fIAlgorithms for Geodesics\fR,
.br
J. Geodesy \fB87\fR, 43-55 (2013);
.br
-DOI: http://dx.doi.org/10.1007/s00190-012-0578-z,
+DOI: http://dx.doi.org/10.1007/s00190-012-0578-z
+.br
+http://geographiclib.sf.net/geod-addenda.html
+.PP
+The \fIonline geodesic bibliography\fR,
.br
-http://geographiclib.sf.net/geod-addenda.html.
+http://geographiclib.sf.net/geodesic-papers/biblio.html
.SH HOME PAGE
http://proj.osgeo.org