aboutsummaryrefslogtreecommitdiff
path: root/src/math.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/math.cpp')
-rw-r--r--src/math.cpp131
1 files changed, 102 insertions, 29 deletions
diff --git a/src/math.cpp b/src/math.cpp
index 540ab9eb..0ec4f57f 100644
--- a/src/math.cpp
+++ b/src/math.cpp
@@ -44,64 +44,137 @@ int pj_isnan (double x) {
#if !(defined(HAVE_C99_MATH) && HAVE_C99_MATH)
+/* Define C99 compatible versions of
+ * hypot
+ * log1p
+ * asinh
+ * atanh
+ * copysign
+ * cbrt
+ * remainder
+ * remquo
+ * round
+ * lround
+ */
+
/* Compute hypotenuse */
double pj_hypot(double x, double y) {
- x = fabs(x);
- y = fabs(y);
- if ( x < y ) {
- x /= y;
- return ( y * sqrt( 1. + x * x ) );
- } else {
- y /= (x != 0.0 ? x : 1.0);
- return ( x * sqrt( 1. + y * y ) );
- }
+ x = fabs(x);
+ y = fabs(y);
+ if (x < y) {
+ x /= y; /* y is nonzero */
+ return y * sqrt(1 + x * x);
+ } else {
+ y /= (x ? x : 1);
+ return x * sqrt(1 + y * y);
+ }
}
/* Compute log(1+x) accurately */
double pj_log1p(double x) {
- volatile double
- y = 1 + x,
- z = y - 1;
- /* Here's the explanation for this magic: y = 1 + z, exactly, and z
- * approx x, thus log(y)/z (which is nearly constant near z = 0) returns
- * a good approximation to the true log(1 + x)/x. The multiplication x *
- * (log(y)/z) introduces little additional error. */
- return z == 0 ? x : x * log(y) / z;
+ volatile double
+ y = 1 + x,
+ z = y - 1;
+ /* Here's the explanation for this magic: y = 1 + z, exactly, and z
+ * approx x, thus log(y)/z (which is nearly constant near z = 0) returns
+ * a good approximation to the true log(1 + x)/x. The multiplication x *
+ * (log(y)/z) introduces little additional error. */
+ return z == 0 ? x : x * log(y) / z;
}
/* Compute asinh(x) accurately */
double pj_asinh(double x) {
- double y = fabs(x); /* Enforce odd parity */
- y = log1p(y * (1 + y/(hypot(1.0, y) + 1)));
- return x > 0 ? y : (x < 0 ? -y : x);
+ double y = fabs(x); /* Enforce odd parity */
+ y = pj_log1p(y * (1 + y/(pj_hypot(1.0, y) + 1)));
+ return x > 0 ? y : (x < 0 ? -y : x); /* asinh(-0.0) = -0.0 */
+}
+
+/* Compute atanh(x) accurately */
+double pj_atanh(double x) {
+ double y = fabs(x); /* Enforce odd parity */
+ y = pj_log1p(2 * y/(1 - y))/2;
+ return x > 0 ? y : (x < 0 ? -y : x); /* atanh(-0.0) = -0.0 */
+}
+
+/* Implement copysign(x, y) */
+double pj_copysign(double x, double y) {
+ /* 1/y trick to get the sign of -0.0 */
+ return fabs(x) * (y < 0 || (y == 0 && 1/y < 0) ? -1 : 1);
+}
+
+/* Implement cbrt(x) */
+double pj_cbrt(double x) {
+ double y = pow(fabs(x), 1/3.0); /* Return the real cube root */
+ return x > 0 ? y : (x < 0 ? -y : x); /* cbrt(-0.0) = -0.0 */
+}
+
+/* Implement remainder(x, y) with ties to even */
+double pj_remainder(double x, double y) {
+ double z;
+ y = fabs(y); /* The result doesn't depend on the sign of y */
+ z = fmod(x, y);
+ if (z == 0)
+ /* This shouldn't be necessary. However, before version 14 (2015),
+ * Visual Studio had problems dealing with -0.0. Specifically
+ * VC 10,11,12 and 32-bit compile: fmod(-0.0, 360.0) -> +0.0
+ * python 2.7 on Windows 32-bit machines has the same problem. */
+ z = pj_copysign(z, x);
+ else if (2 * fabs(z) == y)
+ z -= fmod(x, 2 * y) - z; /* Implement ties to even */
+ else if (2 * fabs(z) > y)
+ z += (z < 0 ? y : -y); /* Fold remaining cases to (-y/2, y/2) */
+ return z;
+}
+
+/* Implement remquo(x, y, n) with n giving low 3 bits + sign of x/y */
+double pj_remquo(double x, double y, int* n) {
+ double z = pj_remainder(x, y);
+ if (n) {
+ double
+ a = pj_remainder(x, 2 * y),
+ b = pj_remainder(x, 4 * y),
+ c = pj_remainder(x, 8 * y);
+ *n = (a > z ? 1 : (a < z ? -1 : 0));
+ *n += (b > a ? 2 : (b < a ? -2 : 0));
+ *n += (c > b ? 4 : (c < b ? -4 : 0));
+ if (y < 0) *n *= -1;
+ if (y != 0) {
+ if (x/y > 0 && *n <= 0)
+ *n += 8;
+ else if (x/y < 0 && *n >= 0)
+ *n -= 8;
+ }
+ }
+ return z;
}
+/* Implement round(x) */
double pj_round(double x) {
/* The handling of corner cases is copied from boost; see
* https://github.com/boostorg/math/pull/8
* with improvements to return -0.0 when appropriate */
double t;
- if (x == 0)
- return x; /* Retain sign of 0 */
- else if (0 < x && x < 0.5)
+ if (0 < x && x < 0.5)
return +0.0;
else if (0 > x && x > -0.5)
return -0.0;
- else if (x > 0) {
+ else if (x > 0) {
t = ceil(x);
return 0.5 < t - x ? t - 1 : t;
- } else { /* Includes NaN */
+ } else if (x < 0) {
t = floor(x);
return 0.5 < x - t ? t + 1 : t;
- }
+ } else /* +/-0 and NaN */
+ return x; /* retain sign of 0 */
}
+/* Implement lround(x) */
long pj_lround(double x) {
/* Default value for overflow + NaN + (x == LONG_MIN) */
long r = LONG_MIN;
- x = round(x);
- if (fabs(x) < -(double)LONG_MIN) /* Assume (double)LONG_MIN is exact */
- r = (int)x;
+ x = pj_round(x);
+ if (fabs(x) < -(double)r) /* Assume (double)LONG_MIN is exact */
+ r = (long)x;
return r;
}