aboutsummaryrefslogtreecommitdiff
path: root/test/gie/builtins.gie
AgeCommit message (Collapse)Author
2022-03-05Increase MAX_ITER so Mollweide forward projection works near the poles. (#3082)erykoff
2022-02-23Rename "Kavraisky" to transliteration "Kavrayskiy" used by Snyder1993 (#3071)Mike Taves
2021-09-15Inverse ortho ellipsoidal oblique: address a few remarks from ↵Even Rouault
https://github.com/OSGeo/PROJ/issues/2844#issuecomment-920138371
2021-09-15Inverse ellipsoidal orthographic projection (oblique case): fix convergence ↵Even Rouault
at pole
2021-09-15Fix error in implementation of Inverse ellipsoidal orthographic projection ↵Even Rouault
(oblique case) that cause convergence to sometimes fail (fixes #2844)
2021-08-16test: more testing of Polar Stereographic variantsEven Rouault
2021-08-13Inverse laea ellipsoidal: return ↵Even Rouault
PROJ_ERR_COORD_TRANSFM_OUTSIDE_PROJECTION_DOMAIN when appropriates (fixes OSGeo/gdal#4224)
2021-07-13Add S2 projection (#2749)marcus-elia
2021-04-15utm: error out when value of +zone= is not an integer (fixes #2671)Even Rouault
2021-04-03cass: add +hyperbolic switch for variant used by EPSG:3139 'Vanua Levu 1915 ↵Even Rouault
/ Vanua Levu Grid'
2021-04-03cass: rewrite ellipsoidal formulas in a clearer way using EPSG guidance note ↵Even Rouault
names
2020-12-15Revise error codes to have a reduced set exposed in the public API.Even Rouault
Fixes #2482 And also add proj_context_errno_string() Revise gie 'expect failure errno XXXX' strings
2020-12-02Merge pull request #2444 from rouault/topocentricEven Rouault
Add +proj=topocentric geocentric->topocentric conversion (fixes #500)
2020-11-29Spherical tmerc forward: do not restrict to [-90,90] longitude rangeEven Rouault
The restriction was a copy&paste from the Evenden/Snyder approximate ellipsoidal implementation, but the spherical one is exact, so this restriction isn't needed. Also tune a bit the handling of lat=0, |lon| > 90
2020-11-29Inverse tmerc spherical: fix wrong sign of latitude when lat_0 is used ↵Even Rouault
(fixes #2468) Corrected formula given by @evanmiller
2020-11-23Add +proj=topocentric geocentric->topocentric conversion (fixes #500)Even Rouault
2020-11-12Polar stereographic at pole: make it return (0,0)Even Rouault
Due to the improved accuracy of pj_tsfn(), it no longer returns 0 when phi=90° due to the conversion in radians. Some GDAL tests are very sensitive to the pole transforming to (0,0) exactly, so add a special case for that. master only
2020-11-01Merge pull request #2397 from cffk/merc-updateCharles Karney
Update Mercator projection, more accurate, faster
2020-10-27Use nm units in builtins.gie. Remove backward looking comments in code.Charles Karney
2020-10-26Try to fix compiler complaints for max and constexpr sqrtCharles Karney
2020-10-26Update Mercator projectionCharles Karney
Introduction ------------ The existing formulation for the Mercator projection is "satisfactory"; it is reasonably accurate. However for a core projection like Mercator, I think we should strive for full double precision accuracy. This commit uses cleaner, more accurate, and faster methods for computing the forward and inverse projections. These use the formulation in terms of hyperbolic functions that are manifestly odd in latitude psi = asinh(tan(phi)) - e * atanh(e * sin(phi)) (phi = latitude; psi = isometric latitude = Mercator y coordinate). Contrast this with the existing formulation psi = log(tan(pi/4 - phi/2)) - e/2 * log((1 + e * sin(phi)) / (1 - e * sin(phi))) where psi(-phi) isn't exactly equal to -psi(phi) and psi(0) isn't guaranteed to be 0. Implementation -------------- There's no particular issue implementing the forward projection, just apply the formulas above. The inverse projection is tricky because there's no closed form solution for the inverse. The existing code for the inverse uses an iterative method from Snyder. This is the usual hokey function iteration, and, as usual, the convergence rate is linear (error reduced by a constant factor on each iteration). This is OK (just) for low accuracy work. But nowadays, something with quadratic convergence (e.g., Newton's method, number of correct digits doubles on each iteration) is preferred (and used here). More on this later. The solution for phi(psi) I use is described in my TM paper and I lifted the specific formulation from GeographicLib's Math::tauf, which uses the same underlying machinery for all conformal projections. It solves for tan(phi) in terms of sinh(psi) which as a near identity mapping is ideal for Newton's method. For comparison I also look at the approach adopted by Poder + Engsager in their TM paper and implemented in etmerc. This uses trigonometric series (accurate to n^6) to convert phi <-> chi. psi is then given by psi = asinh(tan(chi)) Accuracy -------- I tested just the routines for transforming phi <-> psi from merc.cpp and measured the errors (converted to true nm = nanometers) for the forward and inverse mapping. I also included in my analysis the method used by etmerc. This uses a trigonometric series to convert phi <-> chi = atan(sinh(psi)), the conformal latitude. forward inverse max rms max rms old merc 3.60 0.85 2189.47 264.81 etmerc 1.82 0.38 1.42 0.37 new merc 1.83 0.30 2.12 0.31 1 nm is pretty much the absolute limit for accuracy in double precision (1 nm = 10e6 m / 2^53, approximately), and 5 nm is probably the limit on what you should routinely expect. So the old merc inverse is considerably less accurate that it could be. The old merc forward is OK on accuracy -- except that if does not preserve the parity of the projection. The accuracy of etmerc is fine (the truncation error of the 6th order series is small compared with the round-off error). However, situation reverses as the flattening is increased. E.g., at f = 1/150, the max error for the inverse projection is 8 nm. etmerc is OK for terrestrial applications, but couldn't be used for Mars. Timing ------ Here's what I get with g++ -O3 on various Linux machines with recent versions of g++. As always, you should take these with a grain of salt. You might expect the relative timings to vary by 20% or so when switching between compilers/machines. Times per call in ns = nanoseconds. forward inverse old merc 121 360 etmerc 4e-6 1.4 new merc 20 346 The new merc method is 6 times faster at the forward projection and modestly faster at the inverse projection (despite being more accurate). The latter result is because it only take 2 iterations of Newton's method to get full accuracy compared with an average of 5 iterations for the old method to get only um accuracy. A shocking aspect of these timings is how fast etmerc is. Another is that forward etmerc is streaks faster that inverse etmerc (it made be doubt my timing code). Evidently, asinh(tan(chi)) is a lot faster to compute than atan(sinh(psi)). The hesitation about adopting etmerc then comes down to: * the likelihood that Mercator may be used for non-terrestrial bodies; * the question of whether the timing benefits for the etmerc method would be noticeable in a realistic application; * need to duplicate the machinery for evaluating the coefficients for the series and for Clenshaw summation in the current code layout. Ripple effects ============== The Mercator routines used the the Snyder method, pj_tsfn and pj_phi2, are used in other projections. These relate phi to t = exp(-psi) (a rather bizarre choice in my book). I've retrofitted these to use the more accurate methods. These do the "right thing" for phi in [-pi/2, pi/2] , t in [0, inf], and e in [0, 1). NANs are properly handled. Of course, phi = pi/2 in double precision is actually less than pi/2, so cos(pi/2) > 0. So no special handling is needed for pi/2. Even if angles were handled in such a way that 90deg were exactly represented, these routines would still "work", with, e.g., tan(pi/2) -> inf. (A caution: with long doubles = a 64-bit fraction, we have cos(pi/2) < 0; and now we would need to be careful.) As a consequence, there no need for error handling in pj_tsfn; the HUGE_VAL return has gone and, of course, HUGE_VAL is a perfectly legal input to tsfn's inverse, phi2, which would return -pi/2. This "error handling" was only needed for e = 1, a case which is filtered out upstream. I will note that bad argument handling is much more natural using NAN instead of HUGE_VAL. See issue #2376 I've renamed the error condition for non-convergence of the inverse projection from "non-convergent inverse phi2" to "non-convergent sinh(psi) to tan(phi)". Now that pj_tsfn and pj_phi2 now return "better" results, there were some malfunctions in the projections that called them, specifically gstmerc, lcc, and tobmerc. * gstmerc invoked pj_tsfn(phi, sinphi, e) with a value of sinphi that wasn't equal to sin(phi). Disaster followed. I fixed this. I also replaced numerous occurrences of "-1.0 * x" by "-x". (Defining a function with arguments phi and sinphi is asking for trouble.) * lcc incorrectly thinks that the projection isn't defined for standard latitude = +/- 90d. This happens to be false (it reduces to polar stereographic in this limit). The check was whether tsfn(phi) = 0 (which only tested for the north pole not the south pole). However since tsfn(pi/2) now (correctly) returns a nonzero result, this test fails. I now just test for |phi| = pi/2. This is clearer and catches both poles (I'm assuming that the current implementation will probably fail in these cases). * tobmerc similarly thinks that phi close to +/- pi/2 can't be transformed even though psi(pi/2) is only 38. I'm disincline to fight this. However I did tighten up the failure condition (strict equality of |phi| == pi/2). OTHER STUFF =========== Testing ------- builtins.gei: I tightened up the tests for merc (and while I was about it etmerc and tmerc) to reflect full double precision accuracy. My test values are generated with MPFR enabled code and so should be accurate to all digits given. For the record, for GRS80 I use f = 1/298.2572221008827112431628366 in these calculations. pj_phi2_test: many of the tests were bogus testing irrelevant input parameters, like negative values of exp(-psi), and freezing in the arbitrary behavior of phi2. I've reworked most for the tests to be semi-useful. @schwehr can you review. Documentation ------------- I've updated merc.rst to outline the calculation of the inverse projection. phi2.cpp includes detailed notes about applying Newton's method to find tan(phi) in terms of sinh(psi). Future work ----------- lcc needs some tender loving care. It can easily (and should) be modified to allow stdlat = +/- 90 (reduces to polar stereographic), stdlat = 0 and stdlat_1 + stdlat_2 = 0 (reduces to Mercator). A little more elbow grease will allow the treatment of stdlat_1 close to stdlat_2 using divided differences. (See my implementation of the LambertConformalConic class in GeographicLib.) All the places where pj_tsfn and pj_phi2 are called need to be reworked to cut out the use of Snyder's t = exp(-psi() variable and instead use sinh(psi). Maybe include the machinery for series conversions between all auxiliary latitudes as "support functions". Then etmerc could use this (as could mlfn for computing meridional distance). merc could offer the etmerc style projection via chi as an option when the flattening is sufficiently small.
2020-10-25Add +proj=col_urban projection, implementing a EPSG projection method used ↵Even Rouault
by a number of projected CRS in Colombia (fixes #589)
2020-10-25Fix typos spotted by scripts/fix_typos.shEven Rouault
2020-09-27Ortho ellipsoidal inverse: improve accuracy in polar case with (x,y) close ↵Even Rouault
to (0,0)
2020-09-27Ortho ellipsoidal inverse: add domain check for oblique case, and slighly ↵Even Rouault
improve initial guessing
2020-09-26Ortho ellipsoidal inverse: add non iterative implementations for polar and ↵Even Rouault
equatorial
2020-09-26Ortho: add visibility condition for ellipsoidal case. Credits to @cffkEven Rouault
2020-09-26Implement ellipsoidal formulation of +proj=ortho (fixes #397)Even Rouault
- Map ESRI 'Local' to +proj=ortho when Scale_Factor = 1 and Azimuth = 0 - Map ESRI 'Orthographic' to a PROJ WKT2 'Orthographic (Spherical)' which maps to +proj=ortho +f=0 to froce spherical evaluation
2020-05-28Implement wink2 inverse by generic inversion of forward methodEven Rouault
- Move the generic method initiated from adams_ws2 to a pj_generic_inverse_2d() method - Use it in adams_ws2 - Use it in wink2 Fixes https://github.com/qgis/QGIS/issues/35512
2020-05-19Zone Definition Fixes for igh_o projection (#2233)John Krasting
- Central lon for zone 2 should be -d10, not d10 - Extra lobe was missing for zone 11 - New figure generated - New test suite values generated
2020-05-19Implemented IGH Oceanic View (#2226)John Krasting
- The current implementation of the Interrupted Goode Homolosine projection emphasizes land area. This is a compliment projection that emphasizes ocean area. - A value of lon0=-160 produces a reasonable real-world map.
2020-04-21gie: implement a strict mode with <gie-strict> </gie-strict> (fixes #2158)Even Rouault
In that mode: * All non-comment/decoration lines must start with a valid tag * Commands split on several lines should be terminated with " \"
2020-04-16Merge pull request #2030 from rouault/auto_sel_of_tmerc_algEven Rouault
tmerc/utm: add a +algo=auto/evenden_snyder/poder_engsager parameter
2020-04-15tmerc/utm: add a +algo=auto/evenden_snyder/poder_engsager parameterEven Rouault
The default remains +alg=poder_engsager. This default value can be changed in proj.ini +algo=auto will use Evenden Synder implementation if the error in doing so remains below 0.1 mm on Earth-sized ellipsoid
2020-04-14Robinson inverse projection: error on out of domain values (#2151)Martin Raspaud
2020-03-10utm/ups: make sure to set errno to PJD_ERR_ELLIPSOID_USE_REQUIRED if es==0Even Rouault
ENOMEM was wrongly set after setting PJD_ERR_ELLIPSOID_USE_REQUIRED Note: it is a bit strange to forbid the pure spherical case whereas the maths would allow it. I presume this is due to the typical usage of those methods.
2020-02-07Fix test issues on i386Even Rouault
Fix a few issues of #1906 found when running the test suite on Ubuntu 16.04 with gcc 5.5 -m32. When applied on top of the fix of #1912, make check succeeds
2019-10-22Fix test tolerance to run on powerpc architectureEven Rouault
2019-10-03aeqd: for spherical forward path, go to higher precision ellipsoidal case ↵Even Rouault
when the point coordinates are super close to the origin (fixes #1654)
2019-10-01Add rotation support to the HEALPix projection (#1638)Simon Schneegans
2019-09-28test/gie/builtins.gie: remove unused parametersEven Rouault
2019-09-17eqdc: avoid potential division by zero. Fixes ↵Even Rouault
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=17190
2019-05-05geos: avoid division by zeroEven Rouault
Fixes https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=14602 Credit to OSS Fuzz
2019-05-02lagrng: avoid division by zero when latitude is very close to 90Even Rouault
Fixes https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=14477 Credit to OSS Fuzz
2019-04-25gs50 and other mod_ster projections: avoid divison by zeroEven Rouault
Fixes https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=14421 Credit to OSS Fuzz
2019-04-22airy: avoid division by zeroEven Rouault
Fixes https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=14410 Credit to OSS Fuzz
2019-04-20omerc: validate lat_1 and lat_2 to avoid divison by zeroEven Rouault
Fixes https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=14384 Credit to OSS Fuzz
2019-04-18tpers: avoid division by zeroEven Rouault
Fixes https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=14342 Credit to OSS Fuzz
2019-04-18isea: avoid invalid integer shiftEven Rouault
Fixes https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=14286 Credit to OSS Fuzz
2019-04-16omerc: avoid division by zeroEven Rouault
Fixes https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=14279 Credit to OSS Fuzz