blob: 7b6e13da05aa5dbf6c9aaf1227c1d44bb5a207e2 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
.. _merc:
********************************************************************************
Mercator
********************************************************************************
The Mercator projection is a cylindrical map projection that origins
from the 16th century. It is widely recognized as the first regularly
used map projection. It is a conformal projection in which the equator
projects to a straight line at constant scale. The projection has the
property that a rhumb line, a course of constant heading, projects to a
straight line. This makes it suitable for navigational purposes.
+---------------------+----------------------------------------------------------+
| **Classification** | Conformal cylindrical |
+---------------------+----------------------------------------------------------+
| **Available forms** | Forward and inverse, spherical and ellipsoidal |
+---------------------+----------------------------------------------------------+
| **Defined area** | Global, but best used near the equator |
+---------------------+----------------------------------------------------------+
| **Alias** | merc |
+---------------------+----------------------------------------------------------+
| **Domain** | 2D |
+---------------------+----------------------------------------------------------+
| **Input type** | Geodetic coordinates |
+---------------------+----------------------------------------------------------+
| **Output type** | Projected coordinates |
+---------------------+----------------------------------------------------------+
.. figure:: ./images/merc.png
:width: 500 px
:align: center
:alt: Mercator
proj-string: ``+proj=merc``
Usage
########
Applications should be limited to equatorial regions, but is frequently
used for navigational charts with latitude of true scale (:option:`+lat_ts`) specified within
or near chart's boundaries.
It is considered to be inappropriate for world maps because of the gross
distortions in area; for example the projected area of Greenland is
larger than that of South America, despite the fact that Greenland's
area is :math:`\frac18` that of South America :cite:`Snyder1987`.
Example using latitude of true scale::
$ echo 56.35 12.32 | proj +proj=merc +lat_ts=56.5
3470306.37 759599.90
Example using scaling factor::
echo 56.35 12.32 | proj +proj=merc +k_0=2
12545706.61 2746073.80
Note that :option:`+lat_ts` and :option:`+k_0` are mutually exclusive.
If used together, :option:`+lat_ts` takes precedence over :option:`+k_0`.
Parameters
################################################################################
.. note:: All parameters for the projection are optional.
.. include:: ../options/lat_ts.rst
.. include:: ../options/k_0.rst
.. include:: ../options/lon_0.rst
.. include:: ../options/x_0.rst
.. include:: ../options/y_0.rst
.. include:: ../options/ellps.rst
.. include:: ../options/R.rst
Mathematical definition
#######################
Spherical form
**************
For the spherical form of the projection we introduce the scaling factor:
.. math::
k_0 = \cos \phi_{ts}
Forward projection
==================
.. math::
x = k_0R \lambda; \qquad y = k_0R \psi
.. math::
\psi &= \ln \tan \biggl(\frac{\pi}{4} + \frac{\phi}{2} \biggr)\\
&= \sinh^{-1}\tan\phi
The quantity :math:`\psi` is the isometric latitude.
Inverse projection
==================
.. math::
\lambda = \frac{x}{k_0R}; \qquad \psi = \frac{y}{k_0R}
.. math::
\phi &= \frac{\pi}{2} - 2 \tan^{-1} \exp(-\psi)\\
&= \tan^{-1}\sinh\psi
Ellipsoidal form
****************
For the ellipsoidal form of the projection we introduce the scaling factor:
.. math::
k_0 = m( \phi_{ts} )
where
.. math::
m(\phi) = \frac{\cos\phi}{\sqrt{1 - e^2\sin^2\phi}}
:math:`a\,m(\phi)` is the radius of the circle of latitude :math:`\phi`.
Forward projection
==================
.. math::
x = k_0 a \lambda; \qquad y = k_0 a \psi
.. math::
\psi &= \ln\tan\biggl(\frac\pi4 + \frac{\phi}2\biggr)
-\frac12 e
\ln \biggl(\frac{1 + e \sin\phi}{1 - e \sin\phi}\biggr)\\
&= \sinh^{-1}\tan\phi - e \tanh^{-1}(e \sin\phi)
Inverse projection
==================
.. math::
\lambda = \frac{x}{k_0 a}; \quad \psi = \frac{y}{k_0 a}
The latitude :math:`\phi` is found by inverting the equation for
:math:`\psi` iteratively.
Further reading
###############
#. `Wikipedia <https://en.wikipedia.org/wiki/Mercator_projection>`_
#. `Wolfram Mathworld <http://mathworld.wolfram.com/MercatorProjection.html>`_
|