1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
|
.. _tmerc:
********************************************************************************
Transverse Mercator
********************************************************************************
The transverse Mercator projection in its various forms is the most widely used projected coordinate system for world topographical and offshore mapping.
+---------------------+----------------------------------------------------------+
| **Classification** | Transverse and oblique cylindrical |
+---------------------+----------------------------------------------------------+
| **Available forms** | Forward and inverse, Spherical and Elliptical |
+---------------------+----------------------------------------------------------+
| **Defined area** | Global, but reasonably accurate only within 15 degrees |
| | of the central meridian |
+---------------------+----------------------------------------------------------+
| **Alias** | tmerc |
+---------------------+----------------------------------------------------------+
| **Domain** | 2D |
+---------------------+----------------------------------------------------------+
| **Input type** | Geodetic coordinates |
+---------------------+----------------------------------------------------------+
| **Output type** | Projected coordinates |
+---------------------+----------------------------------------------------------+
.. image:: ./images/tmerc.png
:scale: 50%
:alt: Transverse Mercator
Usage
#####
Prior to the development of the Universal Transverse Mercator coordinate system, several European nations demonstrated the utility of grid-based conformal maps by mapping their territory during the interwar period.
Calculating the distance between two points on these maps could be performed more easily in the field (using the Pythagorean theorem) than was possible using the trigonometric formulas required under the graticule-based system of latitude and longitude.
In the post-war years, these concepts were extended into the Universal Transverse Mercator/Universal Polar Stereographic (UTM/UPS) coordinate system, which is a global (or universal) system of grid-based maps.
The following table gives special cases of the Transverse Mercator projection.
+-------------------------------------+-----------------------------------------------------+--------------------------------+------------------------------------------+--------------+
| Projection Name | Areas | Central meridian | Zone width | Scale Factor |
+-------------------------------------+-----------------------------------------------------+--------------------------------+------------------------------------------+--------------+
| Transverse Mercator | World wide | Various | less than 6° | Various |
+-------------------------------------+-----------------------------------------------------+--------------------------------+------------------------------------------+--------------+
| Transverse Mercator south oriented | Southern Africa | 2° intervals E of 11°E | 2° | 1.000 |
+-------------------------------------+-----------------------------------------------------+--------------------------------+------------------------------------------+--------------+
| UTM North hemisphere | World wide equator to 84°N | 6° intervals E & W of 3° E & W | Always 6° | 0.9996 |
+-------------------------------------+-----------------------------------------------------+--------------------------------+------------------------------------------+--------------+
| UTM South hemisphere | World wide north of 80°S to equator | 6° intervals E & W of 3° E & W | Always 6° | 0.9996 |
+-------------------------------------+-----------------------------------------------------+--------------------------------+------------------------------------------+--------------+
| Gauss-Kruger | Former USSR, Yugoslavia, Germany, S. America, China | Various, according to area | Usually less than 6°, often less than 4° | 1.0000 |
+-------------------------------------+-----------------------------------------------------+--------------------------------+------------------------------------------+--------------+
| Gauss Boaga | Italy | Various, according to area | 6° | 0.9996 |
+-------------------------------------+-----------------------------------------------------+--------------------------------+------------------------------------------+--------------+
Example using Gauss-Kruger on Germany area (aka EPSG:31467) ::
$ echo 9 51 | proj +proj=tmerc +lat_0=0 +lon_0=9 +k=1 +x_0=3500000 +y_0=0 +ellps=bessel +datum=potsdam +units=m +no_defs
3500000.00 5651505.56
Example using Gauss Boaga on Italy area (EPSG:3004) ::
$ echo 15 42 | proj +proj=tmerc +lat_0=0 +lon_0=15 +k=0.9996 +x_0=2520000 +y_0=0 +ellps=intl +units=m +no_defs
2520000.00 4649858.60
Parameters
################################################################################
.. note:: All parameters for the projection are optional.
.. include:: ../options/lon_0.rst
.. include:: ../options/lat_0.rst
.. include:: ../options/ellps.rst
.. include:: ../options/R.rst
.. include:: ../options/k_0.rst
.. include:: ../options/x_0.rst
.. include:: ../options/y_0.rst
Mathematical definition
#######################
The formulas describing the Transverse Mercator are all taken from Evenden's [Evenden2005]_.
:math:`\phi_0` is the latitude of origin that match the center of the map. It can be set with ``+lat_0``.
:math:`k_0` is the scale factor at the natural origin (on the central meridian). It can be set with ``+k_0``.
:math:`M(\phi)` is the meridional distance.
Spherical form
**************
Forward projection
==================
.. math::
B = \cos \phi \sin \lambda
.. math::
x = \frac{k_0}{2} \ln(\frac{1+B}{1-B})
.. math::
y = k_0 ( \arctan(\frac{\tan(\phi)}{\cos \lambda}) - \phi_0)
Inverse projection
==================
.. math::
D = \frac{y}{k_0} + \phi_0
.. math::
x' = \frac{x}{k_0}
.. math::
\phi = \arcsin(\frac{\sin D}{\cosh x'})
.. math::
\lambda = \arctan(\frac{\sinh x'}{\cos D})
Elliptical form
***************
Forward projection
==================
.. math::
N = \frac{k_0}{(1 - e^2 \sin^2\phi)^{1/2}}
.. math::
R = \frac{k_0(1-e^2)}{(1-e^2 \sin^2\phi)^{3/2}}
.. math::
t = \tan(\phi)
.. math::
\eta = \frac{e^2}{1-e^2}cos^2\phi
.. math::
x &= k_0 \lambda \cos \phi \\
&+ \frac{k_0 \lambda^3 \cos^3\phi}{3!}(1-t^2+\eta^2) \\
&+ \frac{k_0 \lambda^5 \cos^5\phi}{5!}(5-18t^2+t^4+14\eta^2-58t^2\eta^2) \\
&+\frac{k_0 \lambda^7 \cos^7\phi}{7!}(61-479t^2+179t^4-t^6)
.. math::
y &= M(\phi) \\
&+ \frac{k_0 \lambda^2 \sin(\phi) \cos \phi}{2!} \\
&+ \frac{k_0 \lambda^4 \sin(\phi) \cos^3\phi}{4!}(5-t^2+9\eta^2+4\eta^4) \\
&+ \frac{k_0 \lambda^6 \sin(\phi) \cos^5\phi}{6!}(61-58t^2+t^4+270\eta^2-330t^2\eta^2) \\
&+ \frac{k_0 \lambda^8 \sin(\phi) \cos^7\phi}{8!}(1385-3111t^2+543t^4-t^6)
Inverse projection
==================
.. math::
\phi_1 = M^-1(y)
.. math::
N_1 = \frac{k_0}{1 - e^2 \sin^2\phi_1)^{1/2}}
.. math::
R_1 = \frac{k_0(1-e^2)}{(1-e^2 \sin^2\phi_1)^{3/2}}
.. math::
t_1 = \tan(\phi_1)
.. math::
\eta_1 = \frac{e^2}{1-e^2}cos^2\phi_1
.. math::
\phi &= \phi_1 \\
&- \frac{t_1 x^2}{2! R_1 N_1} \\
&+ \frac{t_1 x^4}{4! R_1 N_1^3}(5+3t_1^2+\eta_1^2-4\eta_1^4-9\eta_1^2t_1^2) \\
&- \frac{t_1 x^6}{6! R_1 N_1^5}(61+90t_1^2+46\eta_1^2+45t_1^4-252t_1^2\eta_1^2) \\
&+ \frac{t_1 x^8}{8! R_1 N_1^7}(1385+3633t_1^2+4095t_1^4+1575t_1^6)
.. math::
\lambda &= \frac{x}{\cos \phi N_1} \\
&- \frac{x^3}{3! \cos \phi N_1^3}(1+2t_1^2+\eta_1^2) \\
&+ \frac{x^5}{5! \cos \phi N_1^5}(5+6\eta_1^2+28t_1^2-3\eta_1^2+8t_1^2\eta_1^2) \\
&- \frac{x^7}{7! \cos \phi N_1^7}(61+662t_1^2+1320t_1^4+720t_1^6)
Further reading
###############
#. `Wikipedia <https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system>`_
#. `EPSG, POSC literature pertaining to Coordinate Conversions and Transformations including Formulas <http://www.ihsenergy.com/epsg/guid7.pdf>`_
|