1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
|
/******************************************************************************
* Project: PROJ.4
* Purpose: Convert between ellipsoidal, geodetic coordinates and
* cartesian, geocentric coordinates.
*
* Formally, this functionality is also found in the PJ_geocent.c
* code.
*
* Actually, however, the PJ_geocent transformations are carried
* out in concert between 2D stubs in PJ_geocent.c and 3D code
* placed in pj_transform.c.
*
* For pipeline-style datum shifts, we do need direct access
* to the full 3D interface for this functionality.
*
* Hence this code, which may look like "just another PJ_geocent"
* but really is something substantially different.
*
* Author: Thomas Knudsen, thokn@sdfe.dk
*
******************************************************************************
* Copyright (c) 2016, Thomas Knudsen / SDFE
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*****************************************************************************/
#define PJ_LIB__
#include "proj_internal.h"
#include "projects.h"
#include <assert.h>
#include <stddef.h>
#include <math.h>
#include <errno.h>
PROJ_HEAD(cart, "Geodetic/cartesian conversions");
/**************************************************************
CARTESIAN / GEODETIC CONVERSIONS
***************************************************************
This material follows:
Bernhard Hofmann-Wellenhof & Helmut Moritz:
Physical Geodesy, 2nd edition.
Springer, 2005.
chapter 5.6: Coordinate transformations
(HM, below),
and
Wikipedia: Geographic Coordinate Conversion,
https://en.m.wikipedia.org/wiki/Geographic_coordinate_conversion
(WP, below).
The cartesian-to-geodetic conversion is based on Bowring's
celebrated method:
B. R. Bowring:
Transformation from spatial to geographical coordinates
Survey Review 23(181), pp. 323-327, 1976
(BB, below),
but could probably use some TLC from a newer and faster
algorithm:
Toshio Fukushima:
Transformation from Cartesian to Geodetic Coordinates
Accelerated by Halley’s Method
Journal of Geodesy, February 2006
(TF, below).
Close to the poles, we avoid singularities by switching to an
approximation requiring knowledge of the geocentric radius
at the given latitude. For this, we use an adaptation of the
formula given in:
Wikipedia: Earth Radius
https://en.wikipedia.org/wiki/Earth_radius#Radius_at_a_given_geodetic_latitude
(Derivation and commentary at http://gis.stackexchange.com/questions/20200/how-do-you-compute-the-earths-radius-at-a-given-geodetic-latitude)
(WP2, below)
These routines are probably not as robust at those in
geocent.c, at least thay haven't been through as heavy
use as their geocent sisters. Some care has been taken
to avoid singularities, but extreme cases (e.g. setting
es, the squared eccentricity, to 1), will cause havoc.
**************************************************************/
/*********************************************************************/
static double normal_radius_of_curvature (double a, double es, double phi) {
/*********************************************************************/
double s = sin(phi);
if (es==0)
return a;
/* This is from WP. HM formula 2-149 gives an a,b version */
return a / sqrt (1 - es*s*s);
}
/*********************************************************************/
static double geocentric_radius (double a, double b, double phi) {
/*********************************************************************
Return the geocentric radius at latitude phi, of an ellipsoid
with semimajor axis a and semiminor axis b.
This is from WP2, but uses hypot() for potentially better
numerical robustness
***********************************************************************/
return hypot (a*a*cos (phi), b*b*sin(phi)) / hypot (a*cos(phi), b*sin(phi));
}
/*********************************************************************/
static XYZ cartesian (LPZ geodetic, PJ *P) {
/*********************************************************************/
double N, cosphi = cos(geodetic.phi);
XYZ xyz;
N = normal_radius_of_curvature(P->a, P->es, geodetic.phi);
/* HM formula 5-27 (z formula follows WP) */
xyz.x = (N + geodetic.z) * cosphi * cos(geodetic.lam);
xyz.y = (N + geodetic.z) * cosphi * sin(geodetic.lam);
xyz.z = (N * (1 - P->es) + geodetic.z) * sin(geodetic.phi);
return xyz;
}
/*********************************************************************/
static LPZ geodetic (XYZ cartesian, PJ *P) {
/*********************************************************************/
double N, p, theta, c, s;
LPZ lpz;
/* Perpendicular distance from point to Z-axis (HM eq. 5-28) */
p = hypot (cartesian.x, cartesian.y);
/* HM eq. (5-37) */
theta = atan2 (cartesian.z * P->a, p * P->b);
/* HM eq. (5-36) (from BB, 1976) */
c = cos(theta);
s = sin(theta);
lpz.phi = atan2 (cartesian.z + P->e2s*P->b*s*s*s, p - P->es*P->a*c*c*c);
lpz.lam = atan2 (cartesian.y, cartesian.x);
N = normal_radius_of_curvature (P->a, P->es, lpz.phi);
c = cos(lpz.phi);
if (fabs(c) < 1e-6) {
/* poleward of 89.99994 deg, we avoid division by zero */
/* by computing the height as the cartesian z value */
/* minus the geocentric radius of the Earth at the given */
/* latitude */
double r = geocentric_radius (P->a, P->b, lpz.phi);
lpz.z = fabs (cartesian.z) - r;
}
else
lpz.z = p / c - N;
return lpz;
}
/* In effect, 2 cartesian coordinates of a point on the ellipsoid. Rather pointless, but... */
static XY cart_forward (LP lp, PJ *P) {
PJ_TRIPLET point;
point.lp = lp;
point.lpz.z = 0;
point.xyz = cartesian (point.lpz, P);
return point.xy;
}
/* And the other way round. Still rather pointless, but... */
static LP cart_reverse (XY xy, PJ *P) {
PJ_TRIPLET point;
point.xy = xy;
point.xyz.z = 0;
point.lpz = geodetic (point.xyz, P);
return point.lp;
}
/*********************************************************************/
PJ *CONVERSION(cart,1) {
/*********************************************************************/
P->fwd3d = cartesian;
P->inv3d = geodetic;
P->fwd = cart_forward;
P->inv = cart_reverse;
P->left = PJ_IO_UNITS_RADIANS;
P->right = PJ_IO_UNITS_METERS;
return P;
}
#ifndef PJ_SELFTEST
/* selftest stub */
int pj_cart_selftest (void) {return 0;}
#else
/* Testing quite a bit of the pj_obs_api as a side effect (inspired by pj_obs_api_test.c) */
int pj_cart_selftest (void) {
PJ_CONTEXT *ctx;
PJ *P;
PJ_COORD a, b, obs[2];
PJ_COORD coord[2];
PJ_INFO info;
PJ_PROJ_INFO pj_info;
PJ_GRID_INFO grid_info;
PJ_INIT_INFO init_info;
PJ_DERIVS derivs;
PJ_FACTORS factors;
const PJ_OPERATIONS *oper_list;
const PJ_ELLPS *ellps_list;
const PJ_UNITS *unit_list;
const PJ_PRIME_MERIDIANS *pm_list;
int err;
size_t n, sz;
double dist, h, t;
char *args[3] = {"proj=utm", "zone=32", "ellps=GRS80"};
char *arg = {"+proj=utm +zone=32 +ellps=GRS80"};
char buf[40];
/* An utm projection on the GRS80 ellipsoid */
P = proj_create (PJ_DEFAULT_CTX, arg);
if (0==P)
return 1;
/* Clean up */
proj_destroy (P);
/* Same projection, now using argc/argv style initialization */
P = proj_create_argv (PJ_DEFAULT_CTX, 3, args);
if (0==P)
return 2;
/* zero initialize everything, then set (longitude, latitude) to (12, 55) */
a = proj_coord (0,0,0,0);
/* a.lp: The coordinate part of a, interpreted as a classic LP pair */
a.lp.lam = PJ_TORAD(12);
a.lp.phi = PJ_TORAD(55);
/* Forward projection */
b = proj_trans (P, PJ_FWD, a);
/* Inverse projection */
a = proj_trans (P, PJ_INV, b);
/* Null projection */
a = proj_trans (P, PJ_IDENT, a);
/* Forward again, to get two linear items for comparison */
a = proj_trans (P, PJ_FWD, a);
dist = proj_xy_dist (a.xy, b.xy);
if (dist > 2e-9)
return 3;
/* Clear any previous error */
proj_errno_set (P, 0);
/* Invalid projection */
a = proj_trans (P, 42, a);
if (a.lpz.lam!=HUGE_VAL)
return 4;
err = proj_errno (P);
if (0==err)
return 5;
/* Clear error again */
proj_errno_set (P, 0);
/* Clean up */
proj_destroy (P);
/* Now do some 3D transformations */
P = proj_create (PJ_DEFAULT_CTX, "+proj=cart +ellps=GRS80");
if (0==P)
return 6;
/* zero initialize everything, then set (longitude, latitude, height) to (12, 55, 100) */
a = b = proj_coord (0,0,0,0);
a.lpz.lam = PJ_TORAD(12);
a.lpz.phi = PJ_TORAD(55);
a.lpz.z = 100;
/* Forward projection: 3D-Cartesian-to-Ellipsoidal */
b = proj_trans (P, PJ_FWD, a);
/* Check roundtrip precision for 10000 iterations each way */
dist = proj_roundtrip (P, PJ_FWD, 10000, &a);
dist = proj_roundtrip (P, PJ_INV, 10000, &b);
if (dist > 2e-9)
return 7;
/* Test at the North Pole */
a = b = proj_coord (0,0,0,0);
a.lpz.lam = PJ_TORAD(0);
a.lpz.phi = PJ_TORAD(90);
a.lpz.z = 100;
/* Forward projection: Ellipsoidal-to-3D-Cartesian */
dist = proj_roundtrip (P, PJ_FWD, 1, &a);
if (dist > 1e-12)
return 8;
/* Test at the South Pole */
a = b = proj_coord (0,0,0,0);
a.lpz.lam = PJ_TORAD(0);
a.lpz.phi = PJ_TORAD(-90);
a.lpz.z = 100;
b = a;
/* Forward projection: Ellipsoidal-to-3D-Cartesian */
dist = proj_roundtrip (P, PJ_FWD, 1, &a);
if (dist > 1e-12)
return 9;
/* Inverse projection: 3D-Cartesian-to-Ellipsoidal */
b = proj_trans (P, PJ_INV, b);
/* Move p to another context */
ctx = proj_context_create ();
if (ctx==pj_get_default_ctx())
return 10;
proj_context_set (P, ctx);
if (ctx != P->ctx)
return 11;
b = proj_trans (P, PJ_FWD, b);
/* Move it back to the default context */
proj_context_set (P, 0);
if (pj_get_default_ctx() != P->ctx)
return 12;
proj_context_destroy (ctx);
/* We go on with the work - now back on the default context */
b = proj_trans (P, PJ_INV, b);
proj_destroy (P);
/* Testing proj_trans_generic () */
/* An utm projection on the GRS80 ellipsoid */
P = proj_create (PJ_DEFAULT_CTX, "+proj=utm +zone=32 +ellps=GRS80");
if (0==P)
return 13;
obs[0] = proj_coord (PJ_TORAD(12), PJ_TORAD(55), 45, 0);
obs[1] = proj_coord (PJ_TORAD(12), PJ_TORAD(56), 50, 0);
sz = sizeof (PJ_COORD);
/* Forward projection */
a = proj_trans (P, PJ_FWD, obs[0]);
b = proj_trans (P, PJ_FWD, obs[1]);
n = proj_trans_generic (
P, PJ_FWD,
&(obs[0].lpz.lam), sz, 2,
&(obs[0].lpz.phi), sz, 2,
&(obs[0].lpz.z), sz, 2,
0, sz, 0
);
if (2!=n)
return 14;
if (a.lpz.lam != obs[0].lpz.lam) return 15;
if (a.lpz.phi != obs[0].lpz.phi) return 16;
if (a.lpz.z != obs[0].lpz.z) return 17;
if (b.lpz.lam != obs[1].lpz.lam) return 18;
if (b.lpz.phi != obs[1].lpz.phi) return 19;
if (b.lpz.z != obs[1].lpz.z) return 20;
/* now test the case of constant z */
obs[0] = proj_coord (PJ_TORAD(12), PJ_TORAD(55), 45, 0);
obs[1] = proj_coord (PJ_TORAD(12), PJ_TORAD(56), 50, 0);
h = 27;
t = 33;
n = proj_trans_generic (
P, PJ_FWD,
&(obs[0].lpz.lam), sz, 2,
&(obs[0].lpz.phi), sz, 2,
&h, 0, 1,
&t, 0, 1
);
if (2!=n)
return 21;
if (a.lpz.lam != obs[0].lpz.lam) return 22;
if (a.lpz.phi != obs[0].lpz.phi) return 23;
if (45 != obs[0].lpz.z) return 24;
if (b.lpz.lam != obs[1].lpz.lam) return 25;
if (b.lpz.phi != obs[1].lpz.phi) return 26;
if (50 != obs[1].lpz.z) return 27; /* NOTE: unchanged */
if (50==h) return 28;
/* test proj_trans_array () */
coord[0] = proj_coord (PJ_TORAD(12), PJ_TORAD(55), 45, 0);
coord[1] = proj_coord (PJ_TORAD(12), PJ_TORAD(56), 50, 0);
if (proj_trans_array (P, PJ_FWD, 2, coord))
return 40;
if (a.lpz.lam != coord[0].lpz.lam) return 41;
if (a.lpz.phi != coord[0].lpz.phi) return 42;
if (a.lpz.z != coord[0].lpz.z) return 43;
if (b.lpz.lam != coord[1].lpz.lam) return 44;
if (b.lpz.phi != coord[1].lpz.phi) return 45;
if (b.lpz.z != coord[1].lpz.z) return 46;
/* Clean up after proj_trans_* tests */
proj_destroy (P);
/* test proj_create_crs_to_crs() */
P = proj_create_crs_to_crs(PJ_DEFAULT_CTX, "epsg:25832", "epsg:25833", NULL);
if (P==0)
return 50;
a.xy.x = 700000.0;
a.xy.y = 6000000.0;
b.xy.x = 307788.8761171057;
b.xy.y = 5999669.3036037628;
a = proj_trans(P, PJ_FWD, a);
if (dist > 1e-7)
return 51;
proj_destroy(P);
/* let's make sure that only entries in init-files results in a usable PJ */
P = proj_create_crs_to_crs(PJ_DEFAULT_CTX, "proj=utm +zone=32 +datum=WGS84", "proj=utm +zone=33 +datum=WGS84", NULL);
if (P != 0) {
proj_destroy(P);
return 52;
}
proj_destroy(P);
/* ********************************************************************** */
/* Test info functions */
/* ********************************************************************** */
/* proj_info() */
/* this one is difficult to test, since the output changes with the setup */
info = proj_info();
if (info.version[0] != '\0' ) {
char tmpstr[64];
sprintf(tmpstr, "%d.%d.%d", info.major, info.minor, info.patch);
if (strcmp(info.version, tmpstr)) return 55;
}
if (info.release[0] == '\0') return 56;
if (info.searchpath[0] == '\0') return 57;
/* proj_pj_info() */
P = proj_create(PJ_DEFAULT_CTX, "+proj=august"); /* august has no inverse */
if (proj_pj_info(P).has_inverse) { proj_destroy(P); return 60; }
proj_destroy(P);
P = proj_create(PJ_DEFAULT_CTX, arg);
pj_info = proj_pj_info(P);
if ( !pj_info.has_inverse ) { proj_destroy(P); return 61; }
if ( strcmp(pj_info.definition, arg) ) { proj_destroy(P); return 62; }
if ( strcmp(pj_info.id, "utm") ) { proj_destroy(P); return 63; }
proj_destroy(P);
/* proj_grid_info() */
grid_info = proj_grid_info("egm96_15.gtx");
if ( strlen(grid_info.filename) == 0 ) return 64;
if ( strcmp(grid_info.gridname, "egm96_15.gtx") ) return 65;
grid_info = proj_grid_info("nonexistinggrid");
if ( strlen(grid_info.filename) > 0 ) return 66;
/* proj_init_info() */
init_info = proj_init_info("unknowninit");
if ( strlen(init_info.filename) != 0 ) return 67;
init_info = proj_init_info("epsg");
/* Need to allow for "Unknown" until all commonly distributed EPSG-files comes with a metadata section */
if ( strcmp(init_info.origin, "EPSG") && strcmp(init_info.origin, "Unknown") ) return 69;
if ( strcmp(init_info.name, "epsg") ) return 68;
/* test proj_rtodms() and proj_dmstor() */
if (strcmp("180dN", proj_rtodms(buf, M_PI, 'N', 'S')))
return 70;
if (proj_dmstor(&buf[0], NULL) != M_PI)
return 71;
if (strcmp("114d35'29.612\"S", proj_rtodms(buf, -2.0, 'N', 'S')))
return 72;
/* we can't expect perfect numerical accuracy so testing with a tolerance */
if (fabs(-2.0 - proj_dmstor(&buf[0], NULL)) > 1e-7)
return 73;
/* test proj_derivatives_retrieve() and proj_factors_retrieve() */
P = proj_create(PJ_DEFAULT_CTX, "+proj=merc");
a = proj_coord (0,0,0,0);
a.lp.lam = PJ_TORAD(12);
a.lp.phi = PJ_TORAD(55);
derivs = proj_derivatives(P, a.lp);
if (proj_errno(P))
return 80; /* derivs not created correctly */
if ( fabs(derivs.x_l - 1.0) > 1e-5 ) return 81;
if ( fabs(derivs.x_p - 0.0) > 1e-5 ) return 82;
if ( fabs(derivs.y_l - 0.0) > 1e-5 ) return 83;
if ( fabs(derivs.y_p - 1.73959) > 1e-5 ) return 84;
factors = proj_factors(P, a.lp);
if (proj_errno(P))
return 85; /* factors not created correctly */
/* check a few key characteristics of the Mercator projection */
if (factors.omega != 0.0) return 86; /* angular distortion should be 0 */
if (factors.thetap != M_PI_2) return 87; /* Meridian/parallel angle should be 90 deg */
if (factors.conv != 0.0) return 88; /* meridian convergence should be 0 */
proj_destroy(P);
/* Check that proj_list_* functions work by looping through them */
n = 0;
for (oper_list = proj_list_operations(); oper_list->id; ++oper_list) n++;
if (n == 0) return 90;
n = 0;
for (ellps_list = proj_list_ellps(); ellps_list->id; ++ellps_list) n++;
if (n == 0) return 91;
n = 0;
for (unit_list = proj_list_units(); unit_list->id; ++unit_list) n++;
if (n == 0) return 92;
n = 0;
for (pm_list = proj_list_prime_meridians(); pm_list->id; ++pm_list) n++;
if (n == 0) return 93;
/* check io-predicates */
/* angular in on fwd, linear out */
P = proj_create (PJ_DEFAULT_CTX, "+proj=cart +ellps=GRS80");
if (0==P) return 0;
if (!proj_angular_input (P, PJ_FWD)) return 100;
if ( proj_angular_input (P, PJ_INV)) return 101;
if ( proj_angular_output (P, PJ_FWD)) return 102;
if (!proj_angular_output (P, PJ_INV)) return 103;
P->inverted = 1;
if ( proj_angular_input (P, PJ_FWD)) return 104;
if (!proj_angular_input (P, PJ_INV)) return 105;
if (!proj_angular_output (P, PJ_FWD)) return 106;
if ( proj_angular_output (P, PJ_INV)) return 107;
proj_destroy(P);
/* angular in and out */
P = proj_create(PJ_DEFAULT_CTX,
"+proj=molodensky +a=6378160 +rf=298.25 "
"+da=-23 +df=-8.120449e-8 +dx=-134 +dy=-48 +dz=149 "
"+abridged "
);
if (0==P) return 0;
if (!proj_angular_input (P, PJ_FWD)) return 108;
if (!proj_angular_input (P, PJ_INV)) return 109;
if (!proj_angular_output (P, PJ_FWD)) return 110;
if (!proj_angular_output (P, PJ_INV)) return 111;
P->inverted = 1;
if (!proj_angular_input (P, PJ_FWD)) return 112;
if (!proj_angular_input (P, PJ_INV)) return 113;
if (!proj_angular_output (P, PJ_FWD)) return 114;
if (!proj_angular_output (P, PJ_INV)) return 115;
proj_destroy(P);
/* linear in and out */
P = proj_create(PJ_DEFAULT_CTX,
" +proj=helmert +ellps=GRS80"
" +x=0.0127 +y=0.0065 +z=-0.0209 +s=0.00195"
" +rx=-0.00039 +ry=0.00080 +rz=-0.00114"
" +dx=-0.0029 +dy=-0.0002 +dz=-0.0006 +ds=0.00001"
" +drx=-0.00011 +dry=-0.00019 +drz=0.00007"
" +epoch=1988.0 +transpose"
);
if (0==P) return 0;
if (proj_angular_input (P, PJ_FWD)) return 116;
if (proj_angular_input (P, PJ_INV)) return 117;
if (proj_angular_output (P, PJ_FWD)) return 118;
if (proj_angular_output (P, PJ_INV)) return 119;
P->inverted = 1;
if (proj_angular_input (P, PJ_FWD)) return 120;
if (proj_angular_input (P, PJ_INV)) return 121;
if (proj_angular_output (P, PJ_FWD)) return 122;
if (proj_angular_output (P, PJ_INV)) return 123;
proj_destroy(P);
return 0;
}
#endif
|