aboutsummaryrefslogtreecommitdiff
path: root/src/PJ_chamb.c
blob: 6951d6a155c1a0cafda9a24648b1ef8be0097c6a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#define PJ_LIB__

#include <errno.h>
#include <math.h>

#include "proj.h"
#include "projects.h"

typedef struct { double r, Az; } VECT;
struct pj_opaque {
    struct { /* control point data */
        double phi, lam;
        double cosphi, sinphi;
        VECT v;
        XY  p;
        double Az;
    } c[3];
    XY p;
    double beta_0, beta_1, beta_2;
};

PROJ_HEAD(chamb, "Chamberlin Trimetric") "\n\tMisc Sph, no inv"
"\n\tlat_1= lon_1= lat_2= lon_2= lat_3= lon_3=";

#include <stdio.h>
#define THIRD 0.333333333333333333
#define TOL 1e-9

/* distance and azimuth from point 1 to point 2 */
static VECT vect(projCtx ctx, double dphi, double c1, double s1, double c2, double s2, double dlam) {
    VECT v;
    double cdl, dp, dl;

    cdl = cos(dlam);
    if (fabs(dphi) > 1. || fabs(dlam) > 1.)
        v.r = aacos(ctx, s1 * s2 + c1 * c2 * cdl);
    else { /* more accurate for smaller distances */
        dp = sin(.5 * dphi);
        dl = sin(.5 * dlam);
        v.r = 2. * aasin(ctx,sqrt(dp * dp + c1 * c2 * dl * dl));
    }
    if (fabs(v.r) > TOL)
        v.Az = atan2(c2 * sin(dlam), c1 * s2 - s1 * c2 * cdl);
    else
        v.r = v.Az = 0.;
    return v;
}

/* law of cosines */
static double lc(projCtx ctx, double b,double c,double a) {
    return aacos(ctx, .5 * (b * b + c * c - a * a) / (b * c));
}


static XY s_forward (LP lp, PJ *P) {           /* Spheroidal, forward */
    XY xy;
    struct pj_opaque *Q = P->opaque;
    double sinphi, cosphi, a;
    VECT v[3];
    int i, j;

    sinphi = sin(lp.phi);
    cosphi = cos(lp.phi);
    for (i = 0; i < 3; ++i) { /* dist/azimiths from control */
        v[i] = vect(P->ctx, lp.phi - Q->c[i].phi, Q->c[i].cosphi, Q->c[i].sinphi,
            cosphi, sinphi, lp.lam - Q->c[i].lam);
        if (v[i].r == 0.0)
            break;
        v[i].Az = adjlon(v[i].Az - Q->c[i].v.Az);
    }
    if (i < 3) /* current point at control point */
        xy = Q->c[i].p;
    else { /* point mean of intersepts */
        xy = Q->p;
        for (i = 0; i < 3; ++i) {
            j = i == 2 ? 0 : i + 1;
            a = lc(P->ctx,Q->c[i].v.r, v[i].r, v[j].r);
            if (v[i].Az < 0.)
                a = -a;
            if (! i) { /* coord comp unique to each arc */
                xy.x += v[i].r * cos(a);
                xy.y -= v[i].r * sin(a);
            } else if (i == 1) {
                a = Q->beta_1 - a;
                xy.x -= v[i].r * cos(a);
                xy.y -= v[i].r * sin(a);
            } else {
                a = Q->beta_2 - a;
                xy.x += v[i].r * cos(a);
                xy.y += v[i].r * sin(a);
            }
        }
        xy.x *= THIRD; /* mean of arc intercepts */
        xy.y *= THIRD;
    }
    return xy;
}



PJ *PROJECTION(chamb) {
    int i, j;
    char line[10];
    struct pj_opaque *Q = pj_calloc (1, sizeof (struct pj_opaque));
    if (0==Q)
        return pj_default_destructor (P, ENOMEM);
    P->opaque = Q;


    for (i = 0; i < 3; ++i) { /* get control point locations */
        (void)sprintf(line, "rlat_%d", i+1);
        Q->c[i].phi = pj_param(P->ctx, P->params, line).f;
        (void)sprintf(line, "rlon_%d", i+1);
        Q->c[i].lam = pj_param(P->ctx, P->params, line).f;
        Q->c[i].lam = adjlon(Q->c[i].lam - P->lam0);
        Q->c[i].cosphi = cos(Q->c[i].phi);
        Q->c[i].sinphi = sin(Q->c[i].phi);
    }
    for (i = 0; i < 3; ++i) { /* inter ctl pt. distances and azimuths */
        j = i == 2 ? 0 : i + 1;
        Q->c[i].v = vect(P->ctx,Q->c[j].phi - Q->c[i].phi, Q->c[i].cosphi, Q->c[i].sinphi,
            Q->c[j].cosphi, Q->c[j].sinphi, Q->c[j].lam - Q->c[i].lam);
        if (Q->c[i].v.r == 0.0)
            return pj_default_destructor (P, PJD_ERR_CONTROL_POINT_NO_DIST);
        /* co-linearity problem ignored for now */
    }
    Q->beta_0 = lc(P->ctx,Q->c[0].v.r, Q->c[2].v.r, Q->c[1].v.r);
    Q->beta_1 = lc(P->ctx,Q->c[0].v.r, Q->c[1].v.r, Q->c[2].v.r);
    Q->beta_2 = M_PI - Q->beta_0;
    Q->p.y = 2. * (Q->c[0].p.y = Q->c[1].p.y = Q->c[2].v.r * sin(Q->beta_0));
    Q->c[2].p.y = 0.;
    Q->c[0].p.x = - (Q->c[1].p.x = 0.5 * Q->c[0].v.r);
    Q->p.x = Q->c[2].p.x = Q->c[0].p.x + Q->c[2].v.r * cos(Q->beta_0);

    P->es = 0.;
    P->fwd = s_forward;

    return P;
}