aboutsummaryrefslogtreecommitdiff
path: root/src/PJ_chamb.c
blob: 6bacbbe97d461d13ccc696915cb979bf3e4a4492 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#define PJ_LIB__
#include    <projects.h>

typedef struct { double r, Az; } VECT;
struct pj_opaque {
    struct { /* control point data */
        double phi, lam;
        double cosphi, sinphi;
        VECT v;
        XY  p;
        double Az;
    } c[3];
    XY p;
    double beta_0, beta_1, beta_2;
};

PROJ_HEAD(chamb, "Chamberlin Trimetric") "\n\tMisc Sph, no inv."
"\n\tlat_1= lon_1= lat_2= lon_2= lat_3= lon_3=";

#include <stdio.h>
#define THIRD 0.333333333333333333
#define TOL 1e-9

/* distance and azimuth from point 1 to point 2 */
static VECT vect(projCtx ctx, double dphi, double c1, double s1, double c2, double s2, double dlam) {
    VECT v;
    double cdl, dp, dl;

    cdl = cos(dlam);
    if (fabs(dphi) > 1. || fabs(dlam) > 1.)
        v.r = aacos(ctx, s1 * s2 + c1 * c2 * cdl);
    else { /* more accurate for smaller distances */
        dp = sin(.5 * dphi);
        dl = sin(.5 * dlam);
        v.r = 2. * aasin(ctx,sqrt(dp * dp + c1 * c2 * dl * dl));
    }
    if (fabs(v.r) > TOL)
        v.Az = atan2(c2 * sin(dlam), c1 * s2 - s1 * c2 * cdl);
    else
        v.r = v.Az = 0.;
    return v;
}

/* law of cosines */
static double lc(projCtx ctx, double b,double c,double a) {
    return aacos(ctx, .5 * (b * b + c * c - a * a) / (b * c));
}


static XY s_forward (LP lp, PJ *P) {           /* Spheroidal, forward */
    XY xy = {0.0,0.0};
    struct pj_opaque *Q = P->opaque;
    double sinphi, cosphi, a;
    VECT v[3];
    int i, j;

    sinphi = sin(lp.phi);
    cosphi = cos(lp.phi);
    for (i = 0; i < 3; ++i) { /* dist/azimiths from control */
        v[i] = vect(P->ctx, lp.phi - Q->c[i].phi, Q->c[i].cosphi, Q->c[i].sinphi,
            cosphi, sinphi, lp.lam - Q->c[i].lam);
        if ( ! v[i].r)
            break;
        v[i].Az = adjlon(v[i].Az - Q->c[i].v.Az);
    }
    if (i < 3) /* current point at control point */
        xy = Q->c[i].p;
    else { /* point mean of intersepts */
        xy = Q->p;
        for (i = 0; i < 3; ++i) {
            j = i == 2 ? 0 : i + 1;
            a = lc(P->ctx,Q->c[i].v.r, v[i].r, v[j].r);
            if (v[i].Az < 0.)
                a = -a;
            if (! i) { /* coord comp unique to each arc */
                xy.x += v[i].r * cos(a);
                xy.y -= v[i].r * sin(a);
            } else if (i == 1) {
                a = Q->beta_1 - a;
                xy.x -= v[i].r * cos(a);
                xy.y -= v[i].r * sin(a);
            } else {
                a = Q->beta_2 - a;
                xy.x += v[i].r * cos(a);
                xy.y += v[i].r * sin(a);
            }
        }
        xy.x *= THIRD; /* mean of arc intercepts */
        xy.y *= THIRD;
    }
    return xy;
}


static void *freeup_new (PJ *P) {                       /* Destructor */
    if (0==P)
        return 0;
    if (0==P->opaque)
        return pj_dealloc (P);

    pj_dealloc (P->opaque);
    return pj_dealloc(P);
}

static void freeup (PJ *P) {
    freeup_new (P);
    return;
}


PJ *PROJECTION(chamb) {
    int i, j;
    char line[10];
    struct pj_opaque *Q = pj_calloc (1, sizeof (struct pj_opaque));
    if (0==Q)
        return freeup_new (P);
    P->opaque = Q;


    for (i = 0; i < 3; ++i) { /* get control point locations */
        (void)sprintf(line, "rlat_%d", i+1);
        Q->c[i].phi = pj_param(P->ctx, P->params, line).f;
        (void)sprintf(line, "rlon_%d", i+1);
        Q->c[i].lam = pj_param(P->ctx, P->params, line).f;
        Q->c[i].lam = adjlon(Q->c[i].lam - P->lam0);
        Q->c[i].cosphi = cos(Q->c[i].phi);
        Q->c[i].sinphi = sin(Q->c[i].phi);
    }
    for (i = 0; i < 3; ++i) { /* inter ctl pt. distances and azimuths */
        j = i == 2 ? 0 : i + 1;
        Q->c[i].v = vect(P->ctx,Q->c[j].phi - Q->c[i].phi, Q->c[i].cosphi, Q->c[i].sinphi,
            Q->c[j].cosphi, Q->c[j].sinphi, Q->c[j].lam - Q->c[i].lam);
        if (! Q->c[i].v.r) E_ERROR(-25);
        /* co-linearity problem ignored for now */
    }
    Q->beta_0 = lc(P->ctx,Q->c[0].v.r, Q->c[2].v.r, Q->c[1].v.r);
    Q->beta_1 = lc(P->ctx,Q->c[0].v.r, Q->c[1].v.r, Q->c[2].v.r);
    Q->beta_2 = M_PI - Q->beta_0;
    Q->p.y = 2. * (Q->c[0].p.y = Q->c[1].p.y = Q->c[2].v.r * sin(Q->beta_0));
    Q->c[2].p.y = 0.;
    Q->c[0].p.x = - (Q->c[1].p.x = 0.5 * Q->c[0].v.r);
    Q->p.x = Q->c[2].p.x = Q->c[0].p.x + Q->c[2].v.r * cos(Q->beta_0);

    P->es = 0.;
    P->fwd = s_forward;

    return P;
}


#ifndef PJ_SELFTEST
int pj_chamb_selftest (void) {return 0;}
#else

int pj_chamb_selftest (void) {
    double tolerance_lp = 1e-10;
    double tolerance_xy = 1e-7;

    char s_args[] = {"+proj=chamb   +a=6400000    +lat_1=0.5 +lat_2=2"};

    LP fwd_in[] = {
        { 2, 1},
        { 2,-1},
        {-2, 1},
        {-2,-1}
    };

    XY s_fwd_expect[] = {
        {-27864.7795868005815,  -223364.324593274243},
        {-251312.283053493476,  -223402.145526208304},
        {-27864.7856491046077,  223364.327328827145},
        {-251312.289116443484,  223402.142197287147},
    };

    return pj_generic_selftest (0, s_args, tolerance_xy, tolerance_lp, 4, 4, fwd_in, 0, s_fwd_expect, 0, 0, 0);
}


#endif