1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
|
/*
Equal Earth is a projection inspired by the Robinson projection, but unlike
the Robinson projection retains the relative size of areas. The projection
was designed in 2018 by Bojan Savric, Tom Patterson and Bernhard Jenny.
Publication:
Bojan Savric, Tom Patterson & Bernhard Jenny (2018). The Equal Earth map
projection, International Journal of Geographical Information Science,
DOI: 10.1080/13658816.2018.1504949
Port to PROJ by Juernjakob Dugge, 16 August 2018
Added ellipsoidal equations by Bojan Savric, 22 August 2018
*/
#define PJ_LIB__
#include <errno.h>
#include <math.h>
#include "projects.h"
PROJ_HEAD(eqearth, "Equal Earth") "\n\tPCyl., Sph&Ell";
#define A1 1.340264
#define A2 -0.081106
#define A3 0.000893
#define A4 0.003796
#define M (sqrt(3) / 2.0)
#define MAX_Y 1.3173627591574 /* 90° latitude on a sphere with radius 1 */
#define EPS 1e-11
#define MAX_ITER 12
struct pj_opaque {
double qp;
double rqda;
double *apa;
};
static XY e_forward (LP lp, PJ *P) { /* Ellipsoidal/Spheroidal, forward */
XY xy = {0.0,0.0};
struct pj_opaque *Q = P->opaque;
double sbeta;
double psi, psi2, psi6;
if (P->es != 0.0) {
/* Ellipsoidal case, converting to authalic latitude */
sbeta = pj_qsfn(sin(lp.phi), P->e, 1.0 - P->es) / Q->qp;
if (fabs(sbeta) > 1) {
/* Rounding error. */
sbeta = sbeta > 0 ? 1 : -1;
}
}
else {
/* Spheroidal case, using latitude */
sbeta = sin(lp.phi);
}
/* Equal Earth projection */
psi = asin(M * sbeta);
psi2 = psi * psi;
psi6 = psi2 * psi2 * psi2;
xy.x = lp.lam * cos(psi) / (M * (A1 + 3 * A2 * psi2 + psi6 * (7 * A3 + 9 * A4 * psi2)));
xy.y = psi * (A1 + A2 * psi2 + psi6 * (A3 + A4 * psi2));
/* Adjusting x and y for authalic radius */
xy.x *= Q->rqda;
xy.y *= Q->rqda;
return xy;
}
static LP e_inverse (XY xy, PJ *P) { /* Ellipsoidal/Spheroidal, inverse */
LP lp = {0.0,0.0};
struct pj_opaque *Q = P->opaque;
double yc, tol, y2, y6, f, fder;
double beta;
int i;
/* Adjusting x and y for authalic radius */
xy.x /= Q->rqda;
xy.y /= Q->rqda;
/* Make sure y is inside valid range */
if (xy.y > MAX_Y) {
xy.y = MAX_Y;
} else if (xy.y < -MAX_Y) {
xy.y = -MAX_Y;
}
yc = xy.y;
for (i = MAX_ITER; i ; --i) { /* Newton-Raphson */
y2 = yc * yc;
y6 = y2 * y2 * y2;
f = yc * (A1 + A2 * y2 + y6 * (A3 + A4 * y2)) - xy.y;
fder = A1 + 3 * A2 * y2 + y6 * (7 * A3 + 9 * A4 * y2);
tol = f / fder;
yc -= tol;
if (fabs(tol) < EPS) {
break;
}
}
if( i == 0 ) {
pj_ctx_set_errno( P->ctx, PJD_ERR_NON_CONVERGENT );
return lp;
}
/* Longitude */
y2 = yc * yc;
y6 = y2 * y2 * y2;
lp.lam = M * xy.x * (A1 + 3 * A2 * y2 + y6 * (7 * A3 + 9 * A4 * y2)) / cos(yc);
/* Latitude */
beta = asin(sin(yc) / M);
if (P->es != 0.0) {
/* Ellipsoidal case, converting authalic latitude */
lp.phi = pj_authlat(beta, Q->apa);
}
else {
/* Spheroidal case, using latitude */
lp.phi = beta;
}
return lp;
}
static void *destructor (PJ *P, int errlev) { /* Destructor */
if (0==P)
return 0;
if (0==P->opaque)
return pj_default_destructor (P, errlev);
pj_dealloc (P->opaque->apa);
return pj_default_destructor (P, errlev);
}
PJ *PROJECTION(eqearth) {
struct pj_opaque *Q = pj_calloc (1, sizeof (struct pj_opaque));
if (0==Q)
return pj_default_destructor (P, ENOMEM);
P->opaque = Q;
P->destructor = destructor;
if (P->es != 0.0) {
Q->apa = pj_authset(P->es); /* For auth_lat(). */
if (0 == Q->apa)
return destructor(P, ENOMEM);
Q->qp = pj_qsfn(1.0, P->e, P->one_es); /* For auth_lat(). */
Q->rqda = sqrt(0.5*Q->qp); /* Authalic radius devided by major axis */
}
else {
Q->rqda = 1.0;
}
P->fwd = e_forward;
P->inv = e_inverse;
return P;
}
|