1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
|
/* PROJ.4 Cartographic Projection System
*/
#define PJ_LIB__
#include <projects.h>
PROJ_HEAD(lcca, "Lambert Conformal Conic Alternative")
"\n\tConic, Sph&Ell\n\tlat_0=";
#define MAX_ITER 10
#define DEL_TOL 1e-12
struct pj_opaque {
double *en;
double r0, l, M0;
double C;
};
static double fS(double S, double C) { /* func to compute dr */
return S * ( 1. + S * S * C);
}
static double fSp(double S, double C) { /* deriv of fs */
return 1. + 3.* S * S * C;
}
static XY e_forward (LP lp, PJ *P) { /* Ellipsoidal, forward */
XY xy = {0.0,0.0};
struct pj_opaque *Q = P->opaque;
double S, r, dr;
S = pj_mlfn(lp.phi, sin(lp.phi), cos(lp.phi), Q->en) - Q->M0;
dr = fS(S, Q->C);
r = Q->r0 - dr;
xy.x = P->k0 * (r * sin( lp.lam *= Q->l ) );
xy.y = P->k0 * (Q->r0 - r * cos(lp.lam) );
return xy;
}
static LP e_inverse (XY xy, PJ *P) { /* Ellipsoidal, inverse */
LP lp = {0.0,0.0};
struct pj_opaque *Q = P->opaque;
double theta, dr, S, dif;
int i;
xy.x /= P->k0;
xy.y /= P->k0;
theta = atan2(xy.x , Q->r0 - xy.y);
dr = xy.y - xy.x * tan(0.5 * theta);
lp.lam = theta / Q->l;
S = dr;
for (i = MAX_ITER; i ; --i) {
S -= (dif = (fS(S, Q->C) - dr) / fSp(S, Q->C));
if (fabs(dif) < DEL_TOL) break;
}
if (!i) I_ERROR
lp.phi = pj_inv_mlfn(P->ctx, S + Q->M0, P->es, Q->en);
return lp;
}
static void *freeup_new (PJ *P) { /* Destructor */
if (0==P)
return 0;
if (0==P->opaque)
return pj_dealloc (P);
pj_dealloc (P->opaque->en);
pj_dealloc (P->opaque);
return pj_dealloc(P);
}
static void freeup (PJ *P) {
freeup_new (P);
return;
}
PJ *PROJECTION(lcca) {
double s2p0, N0, R0, tan0;
struct pj_opaque *Q = pj_calloc (1, sizeof (struct pj_opaque));
if (0==Q)
return freeup_new (P);
P->opaque = Q;
(Q->en = pj_enfn(P->es));
if (!Q->en) E_ERROR_0;
if (!pj_param(P->ctx, P->params, "tlat_0").i) E_ERROR(50);
if (P->phi0 == 0.) E_ERROR(51);
Q->l = sin(P->phi0);
Q->M0 = pj_mlfn(P->phi0, Q->l, cos(P->phi0), Q->en);
s2p0 = Q->l * Q->l;
R0 = 1. / (1. - P->es * s2p0);
N0 = sqrt(R0);
R0 *= P->one_es * N0;
tan0 = tan(P->phi0);
Q->r0 = N0 / tan0;
Q->C = 1. / (6. * R0 * N0);
P->inv = e_inverse;
P->fwd = e_forward;
return P;
}
#ifndef PJ_SELFTEST
int pj_lcca_selftest (void) {return 0;}
#else
int pj_lcca_selftest (void) {
double tolerance_lp = 1e-10;
double tolerance_xy = 1e-7;
char e_args[] = {"+proj=lcca +ellps=GRS80 +lat_0=1 +lat_1=0.5 +lat_2=2"};
LP fwd_in[] = {
{ 2, 1},
{ 2,-1},
{-2, 1},
{-2,-1}
};
XY e_fwd_expect[] = {
{ 222605.285770237417, 67.8060072715846616},
{ 222740.037637936533, -221125.539829601563},
{-222605.285770237417, 67.8060072715846616},
{-222740.037637936533, -221125.539829601563},
};
XY inv_in[] = {
{ 200, 100},
{ 200,-100},
{-200, 100},
{-200,-100}
};
LP e_inv_expect[] = {
{ 0.00179690290525662526, 1.00090436621350798},
{ 0.00179690192174008037, 0.999095632791497268},
{-0.00179690290525662526, 1.00090436621350798},
{-0.00179690192174008037, 0.999095632791497268},
};
return pj_generic_selftest (e_args, 0, tolerance_xy, tolerance_lp, 4, 4, fwd_in, e_fwd_expect, 0, inv_in, e_inv_expect, 0);
}
#endif
|