blob: 3bf2fa94e9d8b6fa0c230946d060dd9d09c3148c (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
|
#define PJ_LIB__
#include <proj.h>
#include "projects.h"
PROJ_HEAD(mbtfpp, "McBride-Thomas Flat-Polar Parabolic") "\n\tCyl., Sph.";
#define CS .95257934441568037152
#define FXC .92582009977255146156
#define FYC 3.40168025708304504493
#define C23 .66666666666666666666
#define C13 .33333333333333333333
#define ONEEPS 1.0000001
static XY s_forward (LP lp, PJ *P) { /* Spheroidal, forward */
XY xy = {0.0,0.0};
(void) P;
lp.phi = asin(CS * sin(lp.phi));
xy.x = FXC * lp.lam * (2. * cos(C23 * lp.phi) - 1.);
xy.y = FYC * sin(C13 * lp.phi);
return xy;
}
static LP s_inverse (XY xy, PJ *P) { /* Spheroidal, inverse */
LP lp = {0.0,0.0};
lp.phi = xy.y / FYC;
if (fabs(lp.phi) >= 1.) {
if (fabs(lp.phi) > ONEEPS) {
proj_errno_set(P, PJD_ERR_TOLERANCE_CONDITION);
return lp;
} else {
lp.phi = (lp.phi < 0.) ? -M_HALFPI : M_HALFPI;
}
} else
lp.phi = asin(lp.phi);
lp.lam = xy.x / ( FXC * (2. * cos(C23 * (lp.phi *= 3.)) - 1.) );
if (fabs(lp.phi = sin(lp.phi) / CS) >= 1.) {
if (fabs(lp.phi) > ONEEPS) {
proj_errno_set(P, PJD_ERR_TOLERANCE_CONDITION);
return lp;
} else {
lp.phi = (lp.phi < 0.) ? -M_HALFPI : M_HALFPI;
}
} else
lp.phi = asin(lp.phi);
return lp;
}
PJ *PROJECTION(mbtfpp) {
P->es = 0.;
P->inv = s_inverse;
P->fwd = s_forward;
return P;
}
|