1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
|
#define PJ_LIB__
#include <projects.h>
PROJ_HEAD(mbtfpp, "McBride-Thomas Flat-Polar Parabolic") "\n\tCyl., Sph.";
#define CS .95257934441568037152
#define FXC .92582009977255146156
#define FYC 3.40168025708304504493
#define C23 .66666666666666666666
#define C13 .33333333333333333333
#define ONEEPS 1.0000001
static XY s_forward (LP lp, PJ *P) { /* Spheroidal, forward */
XY xy = {0.0,0.0};
(void) P;
lp.phi = asin(CS * sin(lp.phi));
xy.x = FXC * lp.lam * (2. * cos(C23 * lp.phi) - 1.);
xy.y = FYC * sin(C13 * lp.phi);
return xy;
}
static LP s_inverse (XY xy, PJ *P) { /* Spheroidal, inverse */
LP lp = {0.0,0.0};
lp.phi = xy.y / FYC;
if (fabs(lp.phi) >= 1.) {
if (fabs(lp.phi) > ONEEPS)
I_ERROR
else
lp.phi = (lp.phi < 0.) ? -M_HALFPI : M_HALFPI;
} else
lp.phi = asin(lp.phi);
lp.lam = xy.x / ( FXC * (2. * cos(C23 * (lp.phi *= 3.)) - 1.) );
if (fabs(lp.phi = sin(lp.phi) / CS) >= 1.) {
if (fabs(lp.phi) > ONEEPS)
I_ERROR
else
lp.phi = (lp.phi < 0.) ? -M_HALFPI : M_HALFPI;
} else
lp.phi = asin(lp.phi);
return lp;
}
static void *freeup_new (PJ *P) { /* Destructor */
if (0==P)
return 0;
return pj_dealloc(P);
}
static void freeup (PJ *P) {
freeup_new (P);
return;
}
PJ *PROJECTION(mbtfpp) {
P->es = 0.;
P->inv = s_inverse;
P->fwd = s_forward;
return P;
}
#ifndef PJ_SELFTEST
int pj_mbtfpp_selftest (void) {return 0;}
#else
int pj_mbtfpp_selftest (void) {
double tolerance_lp = 1e-10;
double tolerance_xy = 1e-7;
char s_args[] = {"+proj=mbtfpp +a=6400000 +lat_1=0.5 +lat_2=2"};
LP fwd_in[] = {
{ 2, 1},
{ 2,-1},
{-2, 1},
{-2,-1}
};
XY s_fwd_expect[] = {
{206804.786929820373, 120649.762565792524},
{206804.786929820373, -120649.762565792524},
{-206804.786929820373, 120649.762565792524},
{-206804.786929820373, -120649.762565792524},
};
XY inv_in[] = {
{ 200, 100},
{ 200,-100},
{-200, 100},
{-200,-100}
};
LP s_inv_expect[] = {
{0.00193395359462902698, 0.00082883725477665357},
{0.00193395359462902698, -0.00082883725477665357},
{-0.00193395359462902698, 0.00082883725477665357},
{-0.00193395359462902698, -0.00082883725477665357},
};
return pj_generic_selftest (0, s_args, tolerance_xy, tolerance_lp, 4, 4, fwd_in, 0, s_fwd_expect, inv_in, 0, s_inv_expect);
}
#endif
|