aboutsummaryrefslogtreecommitdiff
path: root/src/PJ_ocea.c
blob: 3376018064045aa7f9ed5ae4ee7c84ad7725ffd5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#define PJ_LIB__
#include <errno.h>
#include <projects.h>

PROJ_HEAD(ocea, "Oblique Cylindrical Equal Area") "\n\tCyl, Sph"
    "lonc= alpha= or\n\tlat_1= lat_2= lon_1= lon_2=";

struct pj_opaque {
    double  rok;
    double  rtk;
    double  sinphi;
    double  cosphi;
    double  singam;
    double  cosgam;
};


static XY s_forward (LP lp, PJ *P) {           /* Spheroidal, forward */
    XY xy = {0.0,0.0};
    struct pj_opaque *Q = P->opaque;
    double t;
    xy.y = sin(lp.lam);
    t = cos(lp.lam);
    xy.x = atan((tan(lp.phi) * Q->cosphi + Q->sinphi * xy.y) / t);
    if (t < 0.)
        xy.x += M_PI;
    xy.x *= Q->rtk;
    xy.y = Q->rok * (Q->sinphi * sin(lp.phi) - Q->cosphi * cos(lp.phi) * xy.y);
    return xy;
}


static LP s_inverse (XY xy, PJ *P) {           /* Spheroidal, inverse */
    LP lp = {0.0,0.0};
    struct pj_opaque *Q = P->opaque;
    double t, s;

    xy.y /= Q->rok;
    xy.x /= Q->rtk;
    t = sqrt(1. - xy.y * xy.y);
    lp.phi = asin(xy.y * Q->sinphi + t * Q->cosphi * (s = sin(xy.x)));
    lp.lam = atan2(t * Q->sinphi * s - xy.y * Q->cosphi,
        t * cos(xy.x));
    return lp;
}


PJ *PROJECTION(ocea) {
    double phi_0=0.0, phi_1, phi_2, lam_1, lam_2, lonz, alpha;

    struct pj_opaque *Q = pj_calloc (1, sizeof (struct pj_opaque));
    if (0==Q)
        return pj_default_destructor (P, ENOMEM);
    P->opaque = Q;

    Q->rok = 1. / P->k0;
    Q->rtk = P->k0;
    /*If the keyword "alpha" is found in the sentence then use 1point+1azimuth*/
    if ( pj_param(P->ctx, P->params, "talpha").i) {
        /*Define Pole of oblique transformation from 1 point & 1 azimuth*/
        alpha   = pj_param(P->ctx, P->params, "ralpha").f;
        lonz = pj_param(P->ctx, P->params, "rlonc").f;
        /*Equation 9-8 page 80 (http://pubs.usgs.gov/pp/1395/report.pdf)*/
        Q->singam = atan(-cos(alpha)/(-sin(phi_0) * sin(alpha))) + lonz;
        /*Equation 9-7 page 80 (http://pubs.usgs.gov/pp/1395/report.pdf)*/
        Q->sinphi = asin(cos(phi_0) * sin(alpha));
    /*If the keyword "alpha" is NOT found in the sentence then use 2points*/
    } else {
        /*Define Pole of oblique transformation from 2 points*/
        phi_1 = pj_param(P->ctx, P->params, "rlat_1").f;
        phi_2 = pj_param(P->ctx, P->params, "rlat_2").f;
        lam_1 = pj_param(P->ctx, P->params, "rlon_1").f;
        lam_2 = pj_param(P->ctx, P->params, "rlon_2").f;
        /*Equation 9-1 page 80 (http://pubs.usgs.gov/pp/1395/report.pdf)*/
        Q->singam = atan2(cos(phi_1) * sin(phi_2) * cos(lam_1) -
            sin(phi_1) * cos(phi_2) * cos(lam_2),
            sin(phi_1) * cos(phi_2) * sin(lam_2) -
            cos(phi_1) * sin(phi_2) * sin(lam_1) );

        /* take care of P->lam0 wrap-around when +lam_1=-90*/
        if (lam_1 == -M_HALFPI)
            Q->singam = -Q->singam;

        /*Equation 9-2 page 80 (http://pubs.usgs.gov/pp/1395/report.pdf)*/
        Q->sinphi = atan(-cos(Q->singam - lam_1) / tan(phi_1));
    }
    P->lam0 = Q->singam + M_HALFPI;
    Q->cosphi = cos(Q->sinphi);
    Q->sinphi = sin(Q->sinphi);
    Q->cosgam = cos(Q->singam);
    Q->singam = sin(Q->singam);
    P->inv = s_inverse;
    P->fwd = s_forward;
    P->es = 0.;

    return P;
}