1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
|
#define PJ_LIB__
#include <errno.h>
#include <proj.h>
#include "projects.h"
PROJ_HEAD(ortho, "Orthographic") "\n\tAzi, Sph.";
enum Mode {
N_POLE = 0,
S_POLE = 1,
EQUIT = 2,
OBLIQ = 3
};
struct pj_opaque {
double sinph0;
double cosph0;
enum Mode mode;
};
#define EPS10 1.e-10
static XY s_forward (LP lp, PJ *P) { /* Spheroidal, forward */
XY xy = {0.0,0.0};
struct pj_opaque *Q = P->opaque;
double coslam, cosphi, sinphi;
cosphi = cos(lp.phi);
coslam = cos(lp.lam);
switch (Q->mode) {
case EQUIT:
if (cosphi * coslam < - EPS10) {
proj_errno_set(P, PJD_ERR_TOLERANCE_CONDITION);
return xy;
}
xy.y = sin(lp.phi);
break;
case OBLIQ:
if (Q->sinph0 * (sinphi = sin(lp.phi)) + Q->cosph0 * cosphi * coslam < - EPS10) {
proj_errno_set(P, PJD_ERR_TOLERANCE_CONDITION);
return xy;
}
xy.y = Q->cosph0 * sinphi - Q->sinph0 * cosphi * coslam;
break;
case N_POLE:
coslam = - coslam;
/*-fallthrough*/
case S_POLE:
if (fabs(lp.phi - P->phi0) - EPS10 > M_HALFPI) {
proj_errno_set(P, PJD_ERR_TOLERANCE_CONDITION);
return xy;
}
xy.y = cosphi * coslam;
break;
}
xy.x = cosphi * sin(lp.lam);
return xy;
}
static LP s_inverse (XY xy, PJ *P) { /* Spheroidal, inverse */
LP lp = {0.0,0.0};
struct pj_opaque *Q = P->opaque;
double rh, cosc, sinc;
if ((sinc = (rh = hypot(xy.x, xy.y))) > 1.) {
if ((sinc - 1.) > EPS10) {
proj_errno_set(P, PJD_ERR_TOLERANCE_CONDITION);
return lp;
}
sinc = 1.;
}
cosc = sqrt(1. - sinc * sinc); /* in this range OK */
if (fabs(rh) <= EPS10) {
lp.phi = P->phi0;
lp.lam = 0.0;
} else {
switch (Q->mode) {
case N_POLE:
xy.y = -xy.y;
lp.phi = acos(sinc);
break;
case S_POLE:
lp.phi = - acos(sinc);
break;
case EQUIT:
lp.phi = xy.y * sinc / rh;
xy.x *= sinc;
xy.y = cosc * rh;
goto sinchk;
case OBLIQ:
lp.phi = cosc * Q->sinph0 + xy.y * sinc * Q->cosph0 /rh;
xy.y = (cosc - Q->sinph0 * lp.phi) * rh;
xy.x *= sinc * Q->cosph0;
sinchk:
if (fabs(lp.phi) >= 1.)
lp.phi = lp.phi < 0. ? -M_HALFPI : M_HALFPI;
else
lp.phi = asin(lp.phi);
break;
}
lp.lam = (xy.y == 0. && (Q->mode == OBLIQ || Q->mode == EQUIT))
? (xy.x == 0. ? 0. : xy.x < 0. ? -M_HALFPI : M_HALFPI)
: atan2(xy.x, xy.y);
}
return lp;
}
PJ *PROJECTION(ortho) {
struct pj_opaque *Q = pj_calloc (1, sizeof (struct pj_opaque));
if (0==Q)
return pj_default_destructor(P, ENOMEM);
P->opaque = Q;
if (fabs(fabs(P->phi0) - M_HALFPI) <= EPS10)
Q->mode = P->phi0 < 0. ? S_POLE : N_POLE;
else if (fabs(P->phi0) > EPS10) {
Q->mode = OBLIQ;
Q->sinph0 = sin(P->phi0);
Q->cosph0 = cos(P->phi0);
} else
Q->mode = EQUIT;
P->inv = s_inverse;
P->fwd = s_forward;
P->es = 0.;
return P;
}
|