aboutsummaryrefslogtreecommitdiff
path: root/src/math.cpp
blob: 0ec4f57f1300268577ce14bf91f748ef07ad50a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
/******************************************************************************
 * Project:  PROJ
 * Purpose:  Make C99 math functions available on C89 systems
 * Author:   Kristian Evers
 *
 ******************************************************************************
 * Copyright (c) 2018, Kristian Evers
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 *****************************************************************************/

#include "proj_math.h"

/* pj_isnan is used in gie.c which means that is has to */
/* be exported in the Windows DLL and therefore needs   */
/* to be declared even though we have isnan() on the    */
/* system.                                              */

#ifdef HAVE_C99_MATH
int pj_isnan (double x);
#endif

/* Returns 0 if not a NaN and non-zero if val is a NaN */
int pj_isnan (double x) {
    /* cppcheck-suppress duplicateExpression */
    return x != x;
}

#if !(defined(HAVE_C99_MATH) && HAVE_C99_MATH)

/* Define C99 compatible versions of
 *     hypot
 *     log1p
 *     asinh
 *     atanh
 *     copysign
 *     cbrt
 *     remainder
 *     remquo
 *     round
 *     lround
 */

/* Compute hypotenuse */
double pj_hypot(double x, double y) {
  x = fabs(x);
  y = fabs(y);
  if (x < y) {
    x /= y;                     /* y is nonzero */
    return y * sqrt(1 + x * x);
  } else {
    y /= (x ? x : 1);
    return x * sqrt(1 + y * y);
  }
}

/* Compute log(1+x) accurately */
double pj_log1p(double x) {
  volatile double
    y = 1 + x,
    z = y - 1;
  /* Here's the explanation for this magic: y = 1 + z, exactly, and z
   * approx x, thus log(y)/z (which is nearly constant near z = 0) returns
   * a good approximation to the true log(1 + x)/x.  The multiplication x *
   * (log(y)/z) introduces little additional error. */
  return z == 0 ? x : x * log(y) / z;
}

/* Compute asinh(x) accurately */
double pj_asinh(double x) {
  double y = fabs(x);           /* Enforce odd parity */
  y = pj_log1p(y * (1 + y/(pj_hypot(1.0, y) + 1)));
  return x > 0 ? y : (x < 0 ? -y : x); /* asinh(-0.0) = -0.0 */
}

/* Compute atanh(x) accurately */
double pj_atanh(double x) {
  double y = fabs(x);             /* Enforce odd parity */
  y = pj_log1p(2 * y/(1 - y))/2;
  return x > 0 ? y : (x < 0 ? -y : x); /* atanh(-0.0) = -0.0 */
}

/* Implement copysign(x, y)  */
double pj_copysign(double x, double y) {
  /* 1/y trick to get the sign of -0.0 */
  return fabs(x) * (y < 0 || (y == 0 && 1/y < 0) ? -1 : 1);
}

/* Implement cbrt(x)  */
double pj_cbrt(double x) {
  double y = pow(fabs(x), 1/3.0);      /* Return the real cube root */
  return x > 0 ? y : (x < 0 ? -y : x); /* cbrt(-0.0) = -0.0 */
}

/* Implement remainder(x, y) with ties to even */
double pj_remainder(double x, double y) {
  double z;
  y = fabs(y);                 /* The result doesn't depend on the sign of y */
  z = fmod(x, y);
  if (z == 0)
    /* This shouldn't be necessary.  However, before version 14 (2015),
     * Visual Studio had problems dealing with -0.0.  Specifically
     *   VC 10,11,12 and 32-bit compile: fmod(-0.0, 360.0) -> +0.0
     * python 2.7 on Windows 32-bit machines has the same problem. */
    z = pj_copysign(z, x);
  else if (2 * fabs(z) == y)
    z -= fmod(x, 2 * y) - z;    /* Implement ties to even */
  else if (2 * fabs(z) > y)
    z += (z < 0 ? y : -y);      /* Fold remaining cases to (-y/2, y/2) */
  return z;
}

/* Implement remquo(x, y, n) with n giving low 3 bits + sign of x/y */
double pj_remquo(double x, double y, int* n) {
  double z = pj_remainder(x, y);
  if (n) {
    double
      a = pj_remainder(x, 2 * y),
      b = pj_remainder(x, 4 * y),
      c = pj_remainder(x, 8 * y);
    *n  = (a > z ? 1 : (a < z ? -1 : 0));
    *n += (b > a ? 2 : (b < a ? -2 : 0));
    *n += (c > b ? 4 : (c < b ? -4 : 0));
    if (y < 0) *n *= -1;
    if (y != 0) {
      if (x/y > 0 && *n <= 0)
        *n += 8;
      else if (x/y < 0 && *n >= 0)
        *n -= 8;
    }
  }
  return z;
}

/* Implement round(x) */
double pj_round(double x) {
  /* The handling of corner cases is copied from boost; see
   *   https://github.com/boostorg/math/pull/8
   * with improvements to return -0.0 when appropriate */
  double t;
  if      (0 < x && x <  0.5)
    return +0.0;
  else if (0 > x && x > -0.5)
    return -0.0;
  else if   (x > 0) {
    t = ceil(x);
    return 0.5 < t - x ? t - 1 : t;
  } else if (x < 0) {
    t = floor(x);
    return 0.5 < x - t ? t + 1 : t;
  } else                        /* +/-0 and NaN */
    return x;                   /* retain sign of 0 */
}

/* Implement lround(x) */
long pj_lround(double x) {
  /* Default value for overflow + NaN + (x == LONG_MIN) */
  long r = LONG_MIN;
  x = pj_round(x);
  if (fabs(x) < -(double)r)     /* Assume (double)LONG_MIN is exact */
    r = (long)x;
  return r;
}

#endif /* !(defined(HAVE_C99_MATH) && HAVE_C99_MATH) */