1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
|
#define PJ_LIB__
#include <errno.h>
#include "proj.h"
#include "projects.h"
#include "proj_math.h"
PROJ_HEAD(bonne, "Bonne (Werner lat_1=90)")
"\n\tConic Sph&Ell\n\tlat_1=";
#define EPS10 1e-10
namespace { // anonymous namespace
struct pj_opaque {
double phi1;
double cphi1;
double am1;
double m1;
double *en;
};
} // anonymous namespace
static XY e_forward (LP lp, PJ *P) { /* Ellipsoidal, forward */
XY xy = {0.0,0.0};
struct pj_opaque *Q = static_cast<struct pj_opaque*>(P->opaque);
double rh, E, c;
rh = Q->am1 + Q->m1 - pj_mlfn(lp.phi, E = sin(lp.phi), c = cos(lp.phi), Q->en);
E = c * lp.lam / (rh * sqrt(1. - P->es * E * E));
xy.x = rh * sin(E);
xy.y = Q->am1 - rh * cos(E);
return xy;
}
static XY s_forward (LP lp, PJ *P) { /* Spheroidal, forward */
XY xy = {0.0,0.0};
struct pj_opaque *Q = static_cast<struct pj_opaque*>(P->opaque);
double E, rh;
rh = Q->cphi1 + Q->phi1 - lp.phi;
if (fabs(rh) > EPS10) {
xy.x = rh * sin(E = lp.lam * cos(lp.phi) / rh);
xy.y = Q->cphi1 - rh * cos(E);
} else
xy.x = xy.y = 0.;
return xy;
}
static LP s_inverse (XY xy, PJ *P) { /* Spheroidal, inverse */
LP lp = {0.0,0.0};
struct pj_opaque *Q = static_cast<struct pj_opaque*>(P->opaque);
double rh;
rh = hypot(xy.x, xy.y = Q->cphi1 - xy.y);
lp.phi = Q->cphi1 + Q->phi1 - rh;
if (fabs(lp.phi) > M_HALFPI) {
proj_errno_set(P, PJD_ERR_TOLERANCE_CONDITION);
return lp;
}
if (fabs(fabs(lp.phi) - M_HALFPI) <= EPS10)
lp.lam = 0.;
else
lp.lam = rh * atan2(xy.x, xy.y) / cos(lp.phi);
return lp;
}
static LP e_inverse (XY xy, PJ *P) { /* Ellipsoidal, inverse */
LP lp = {0.0,0.0};
struct pj_opaque *Q = static_cast<struct pj_opaque*>(P->opaque);
double s, rh;
rh = hypot(xy.x, xy.y = Q->am1 - xy.y);
lp.phi = pj_inv_mlfn(P->ctx, Q->am1 + Q->m1 - rh, P->es, Q->en);
if ((s = fabs(lp.phi)) < M_HALFPI) {
s = sin(lp.phi);
lp.lam = rh * atan2(xy.x, xy.y) *
sqrt(1. - P->es * s * s) / cos(lp.phi);
} else if (fabs(s - M_HALFPI) <= EPS10)
lp.lam = 0.;
else {
proj_errno_set(P, PJD_ERR_TOLERANCE_CONDITION);
return lp;
}
return lp;
}
static PJ *destructor (PJ *P, int errlev) { /* Destructor */
if (nullptr==P)
return nullptr;
if (nullptr==P->opaque)
return pj_default_destructor (P, errlev);
pj_dealloc (static_cast<struct pj_opaque*>(P->opaque)->en);
return pj_default_destructor (P, errlev);
}
PJ *PROJECTION(bonne) {
double c;
struct pj_opaque *Q = static_cast<struct pj_opaque*>(pj_calloc (1, sizeof (struct pj_opaque)));
if (nullptr==Q)
return pj_default_destructor (P, ENOMEM);
P->opaque = Q;
P->destructor = destructor;
Q->phi1 = pj_param(P->ctx, P->params, "rlat_1").f;
if (fabs(Q->phi1) < EPS10)
return destructor (P, PJD_ERR_LAT1_IS_ZERO);
if (P->es != 0.0) {
Q->en = pj_enfn(P->es);
if (nullptr==Q->en)
return destructor(P, ENOMEM);
Q->m1 = pj_mlfn(Q->phi1, Q->am1 = sin(Q->phi1),
c = cos(Q->phi1), Q->en);
Q->am1 = c / (sqrt(1. - P->es * Q->am1 * Q->am1) * Q->am1);
P->inv = e_inverse;
P->fwd = e_forward;
} else {
if (fabs(Q->phi1) + EPS10 >= M_HALFPI)
Q->cphi1 = 0.;
else
Q->cphi1 = 1. / tan(Q->phi1);
P->inv = s_inverse;
P->fwd = s_forward;
}
return P;
}
|