1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
|
#define PJ_LIB__
#include <errno.h>
#include <math.h>
#include "proj.h"
#include "proj_internal.h"
typedef struct { double r, Az; } VECT;
namespace { // anonymous namespace
struct pj_opaque {
struct { /* control point data */
double phi, lam;
double cosphi, sinphi;
VECT v;
PJ_XY p;
double Az;
} c[3];
PJ_XY p;
double beta_0, beta_1, beta_2;
};
} // anonymous namespace
PROJ_HEAD(chamb, "Chamberlin Trimetric") "\n\tMisc Sph, no inv"
"\n\tlat_1= lon_1= lat_2= lon_2= lat_3= lon_3=";
#include <stdio.h>
#define THIRD 0.333333333333333333
#define TOL 1e-9
/* distance and azimuth from point 1 to point 2 */
static VECT vect(PJ_CONTEXT *ctx, double dphi, double c1, double s1, double c2, double s2, double dlam) {
VECT v;
double cdl, dp, dl;
cdl = cos(dlam);
if (fabs(dphi) > 1. || fabs(dlam) > 1.)
v.r = aacos(ctx, s1 * s2 + c1 * c2 * cdl);
else { /* more accurate for smaller distances */
dp = sin(.5 * dphi);
dl = sin(.5 * dlam);
v.r = 2. * aasin(ctx,sqrt(dp * dp + c1 * c2 * dl * dl));
}
if (fabs(v.r) > TOL)
v.Az = atan2(c2 * sin(dlam), c1 * s2 - s1 * c2 * cdl);
else
v.r = v.Az = 0.;
return v;
}
/* law of cosines */
static double lc(PJ_CONTEXT *ctx, double b,double c,double a) {
return aacos(ctx, .5 * (b * b + c * c - a * a) / (b * c));
}
static PJ_XY chamb_s_forward (PJ_LP lp, PJ *P) { /* Spheroidal, forward */
PJ_XY xy;
struct pj_opaque *Q = static_cast<struct pj_opaque*>(P->opaque);
double sinphi, cosphi, a;
VECT v[3];
int i, j;
sinphi = sin(lp.phi);
cosphi = cos(lp.phi);
for (i = 0; i < 3; ++i) { /* dist/azimiths from control */
v[i] = vect(P->ctx, lp.phi - Q->c[i].phi, Q->c[i].cosphi, Q->c[i].sinphi,
cosphi, sinphi, lp.lam - Q->c[i].lam);
if (v[i].r == 0.0)
break;
v[i].Az = adjlon(v[i].Az - Q->c[i].v.Az);
}
if (i < 3) /* current point at control point */
xy = Q->c[i].p;
else { /* point mean of intersepts */
xy = Q->p;
for (i = 0; i < 3; ++i) {
j = i == 2 ? 0 : i + 1;
a = lc(P->ctx,Q->c[i].v.r, v[i].r, v[j].r);
if (v[i].Az < 0.)
a = -a;
if (! i) { /* coord comp unique to each arc */
xy.x += v[i].r * cos(a);
xy.y -= v[i].r * sin(a);
} else if (i == 1) {
a = Q->beta_1 - a;
xy.x -= v[i].r * cos(a);
xy.y -= v[i].r * sin(a);
} else {
a = Q->beta_2 - a;
xy.x += v[i].r * cos(a);
xy.y += v[i].r * sin(a);
}
}
xy.x *= THIRD; /* mean of arc intercepts */
xy.y *= THIRD;
}
return xy;
}
PJ *PROJECTION(chamb) {
int i, j;
char line[10];
struct pj_opaque *Q = static_cast<struct pj_opaque*>(calloc (1, sizeof (struct pj_opaque)));
if (nullptr==Q)
return pj_default_destructor (P, PROJ_ERR_OTHER /*ENOMEM*/);
P->opaque = Q;
for (i = 0; i < 3; ++i) { /* get control point locations */
(void)sprintf(line, "rlat_%d", i+1);
Q->c[i].phi = pj_param(P->ctx, P->params, line).f;
(void)sprintf(line, "rlon_%d", i+1);
Q->c[i].lam = pj_param(P->ctx, P->params, line).f;
Q->c[i].lam = adjlon(Q->c[i].lam - P->lam0);
Q->c[i].cosphi = cos(Q->c[i].phi);
Q->c[i].sinphi = sin(Q->c[i].phi);
}
for (i = 0; i < 3; ++i) { /* inter ctl pt. distances and azimuths */
j = i == 2 ? 0 : i + 1;
Q->c[i].v = vect(P->ctx,Q->c[j].phi - Q->c[i].phi, Q->c[i].cosphi, Q->c[i].sinphi,
Q->c[j].cosphi, Q->c[j].sinphi, Q->c[j].lam - Q->c[i].lam);
if (Q->c[i].v.r == 0.0)
{
proj_log_error(P, _("Invalid value for control points: they should be distinct"));
return pj_default_destructor(P, PROJ_ERR_INVALID_OP_ILLEGAL_ARG_VALUE);
}
/* co-linearity problem ignored for now */
}
Q->beta_0 = lc(P->ctx,Q->c[0].v.r, Q->c[2].v.r, Q->c[1].v.r);
Q->beta_1 = lc(P->ctx,Q->c[0].v.r, Q->c[1].v.r, Q->c[2].v.r);
Q->beta_2 = M_PI - Q->beta_0;
Q->c[0].p.y = Q->c[2].v.r * sin(Q->beta_0);
Q->c[1].p.y = Q->c[0].p.y;
Q->p.y = 2. * Q->c[0].p.y;
Q->c[2].p.y = 0.;
Q->c[1].p.x = 0.5 * Q->c[0].v.r;
Q->c[0].p.x = -Q->c[1].p.x;
Q->c[2].p.x = Q->c[0].p.x + Q->c[2].v.r * cos(Q->beta_0);
Q->p.x = Q->c[2].p.x;
P->es = 0.;
P->fwd = chamb_s_forward;
return P;
}
|