1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
|
#define PJ_LIB__
#include <errno.h>
#include "proj.h"
#include "proj_internal.h"
#include <math.h>
PROJ_HEAD(laea, "Lambert Azimuthal Equal Area") "\n\tAzi, Sph&Ell";
namespace { // anonymous namespace
enum Mode {
N_POLE = 0,
S_POLE = 1,
EQUIT = 2,
OBLIQ = 3
};
} // anonymous namespace
namespace { // anonymous namespace
struct pj_opaque {
double sinb1;
double cosb1;
double xmf;
double ymf;
double mmf;
double qp;
double dd;
double rq;
double *apa;
enum Mode mode;
};
} // anonymous namespace
#define EPS10 1.e-10
static PJ_XY laea_e_forward (PJ_LP lp, PJ *P) { /* Ellipsoidal, forward */
PJ_XY xy = {0.0,0.0};
struct pj_opaque *Q = static_cast<struct pj_opaque*>(P->opaque);
double coslam, sinlam, sinphi, q, sinb=0.0, cosb=0.0, b=0.0;
coslam = cos(lp.lam);
sinlam = sin(lp.lam);
sinphi = sin(lp.phi);
q = pj_qsfn(sinphi, P->e, P->one_es);
if (Q->mode == OBLIQ || Q->mode == EQUIT) {
sinb = q / Q->qp;
cosb = sqrt(1. - sinb * sinb);
}
switch (Q->mode) {
case OBLIQ:
b = 1. + Q->sinb1 * sinb + Q->cosb1 * cosb * coslam;
break;
case EQUIT:
b = 1. + cosb * coslam;
break;
case N_POLE:
b = M_HALFPI + lp.phi;
q = Q->qp - q;
break;
case S_POLE:
b = lp.phi - M_HALFPI;
q = Q->qp + q;
break;
}
if (fabs(b) < EPS10) {
proj_errno_set(P, PJD_ERR_TOLERANCE_CONDITION);
return xy;
}
switch (Q->mode) {
case OBLIQ:
b = sqrt(2. / b);
xy.y = Q->ymf * b * (Q->cosb1 * sinb - Q->sinb1 * cosb * coslam);
goto eqcon;
break;
case EQUIT:
b = sqrt(2. / (1. + cosb * coslam));
xy.y = b * sinb * Q->ymf;
eqcon:
xy.x = Q->xmf * b * cosb * sinlam;
break;
case N_POLE:
case S_POLE:
if (q >= 1e-15) {
b = sqrt(q);
xy.x = b * sinlam;
xy.y = coslam * (Q->mode == S_POLE ? b : -b);
} else
xy.x = xy.y = 0.;
break;
}
return xy;
}
static PJ_XY laea_s_forward (PJ_LP lp, PJ *P) { /* Spheroidal, forward */
PJ_XY xy = {0.0,0.0};
struct pj_opaque *Q = static_cast<struct pj_opaque*>(P->opaque);
double coslam, cosphi, sinphi;
sinphi = sin(lp.phi);
cosphi = cos(lp.phi);
coslam = cos(lp.lam);
switch (Q->mode) {
case EQUIT:
xy.y = 1. + cosphi * coslam;
goto oblcon;
case OBLIQ:
xy.y = 1. + Q->sinb1 * sinphi + Q->cosb1 * cosphi * coslam;
oblcon:
if (xy.y <= EPS10) {
proj_errno_set(P, PJD_ERR_TOLERANCE_CONDITION);
return xy;
}
xy.y = sqrt(2. / xy.y);
xy.x = xy.y * cosphi * sin(lp.lam);
xy.y *= Q->mode == EQUIT ? sinphi :
Q->cosb1 * sinphi - Q->sinb1 * cosphi * coslam;
break;
case N_POLE:
coslam = -coslam;
/*-fallthrough*/
case S_POLE:
if (fabs(lp.phi + P->phi0) < EPS10) {
proj_errno_set(P, PJD_ERR_TOLERANCE_CONDITION);
return xy;
}
xy.y = M_FORTPI - lp.phi * .5;
xy.y = 2. * (Q->mode == S_POLE ? cos(xy.y) : sin(xy.y));
xy.x = xy.y * sin(lp.lam);
xy.y *= coslam;
break;
}
return xy;
}
static PJ_LP laea_e_inverse (PJ_XY xy, PJ *P) { /* Ellipsoidal, inverse */
PJ_LP lp = {0.0,0.0};
struct pj_opaque *Q = static_cast<struct pj_opaque*>(P->opaque);
double cCe, sCe, q, rho, ab=0.0;
switch (Q->mode) {
case EQUIT:
case OBLIQ:
xy.x /= Q->dd;
xy.y *= Q->dd;
rho = hypot(xy.x, xy.y);
if (rho < EPS10) {
lp.lam = 0.;
lp.phi = P->phi0;
return lp;
}
sCe = 2. * asin(.5 * rho / Q->rq);
cCe = cos(sCe);
sCe = sin(sCe);
xy.x *= sCe;
if (Q->mode == OBLIQ) {
ab = cCe * Q->sinb1 + xy.y * sCe * Q->cosb1 / rho;
xy.y = rho * Q->cosb1 * cCe - xy.y * Q->sinb1 * sCe;
} else {
ab = xy.y * sCe / rho;
xy.y = rho * cCe;
}
break;
case N_POLE:
xy.y = -xy.y;
/*-fallthrough*/
case S_POLE:
q = (xy.x * xy.x + xy.y * xy.y);
if (q == 0.0) {
lp.lam = 0.;
lp.phi = P->phi0;
return (lp);
}
ab = 1. - q / Q->qp;
if (Q->mode == S_POLE)
ab = - ab;
break;
}
lp.lam = atan2(xy.x, xy.y);
lp.phi = pj_authlat(asin(ab), Q->apa);
return lp;
}
static PJ_LP laea_s_inverse (PJ_XY xy, PJ *P) { /* Spheroidal, inverse */
PJ_LP lp = {0.0,0.0};
struct pj_opaque *Q = static_cast<struct pj_opaque*>(P->opaque);
double cosz=0.0, rh, sinz=0.0;
rh = hypot(xy.x, xy.y);
if ((lp.phi = rh * .5 ) > 1.) {
proj_errno_set(P, PJD_ERR_TOLERANCE_CONDITION);
return lp;
}
lp.phi = 2. * asin(lp.phi);
if (Q->mode == OBLIQ || Q->mode == EQUIT) {
sinz = sin(lp.phi);
cosz = cos(lp.phi);
}
switch (Q->mode) {
case EQUIT:
lp.phi = fabs(rh) <= EPS10 ? 0. : asin(xy.y * sinz / rh);
xy.x *= sinz;
xy.y = cosz * rh;
break;
case OBLIQ:
lp.phi = fabs(rh) <= EPS10 ? P->phi0 :
asin(cosz * Q->sinb1 + xy.y * sinz * Q->cosb1 / rh);
xy.x *= sinz * Q->cosb1;
xy.y = (cosz - sin(lp.phi) * Q->sinb1) * rh;
break;
case N_POLE:
xy.y = -xy.y;
lp.phi = M_HALFPI - lp.phi;
break;
case S_POLE:
lp.phi -= M_HALFPI;
break;
}
lp.lam = (xy.y == 0. && (Q->mode == EQUIT || Q->mode == OBLIQ)) ?
0. : atan2(xy.x, xy.y);
return (lp);
}
static PJ *destructor (PJ *P, int errlev) {
if (nullptr==P)
return nullptr;
if (nullptr==P->opaque)
return pj_default_destructor (P, errlev);
pj_dealloc (static_cast<struct pj_opaque*>(P->opaque)->apa);
return pj_default_destructor(P, errlev);
}
PJ *PROJECTION(laea) {
double t;
struct pj_opaque *Q = static_cast<struct pj_opaque*>(pj_calloc (1, sizeof (struct pj_opaque)));
if (nullptr==Q)
return pj_default_destructor (P, ENOMEM);
P->opaque = Q;
P->destructor = destructor;
t = fabs(P->phi0);
if (t > M_HALFPI + EPS10 ) {
return destructor(P, PJD_ERR_LAT_LARGER_THAN_90);
}
if (fabs(t - M_HALFPI) < EPS10)
Q->mode = P->phi0 < 0. ? S_POLE : N_POLE;
else if (fabs(t) < EPS10)
Q->mode = EQUIT;
else
Q->mode = OBLIQ;
if (P->es != 0.0) {
double sinphi;
P->e = sqrt(P->es);
Q->qp = pj_qsfn(1., P->e, P->one_es);
Q->mmf = .5 / (1. - P->es);
Q->apa = pj_authset(P->es);
if (nullptr==Q->apa)
return destructor(P, ENOMEM);
switch (Q->mode) {
case N_POLE:
case S_POLE:
Q->dd = 1.;
break;
case EQUIT:
Q->dd = 1. / (Q->rq = sqrt(.5 * Q->qp));
Q->xmf = 1.;
Q->ymf = .5 * Q->qp;
break;
case OBLIQ:
Q->rq = sqrt(.5 * Q->qp);
sinphi = sin(P->phi0);
Q->sinb1 = pj_qsfn(sinphi, P->e, P->one_es) / Q->qp;
Q->cosb1 = sqrt(1. - Q->sinb1 * Q->sinb1);
Q->dd = cos(P->phi0) / (sqrt(1. - P->es * sinphi * sinphi) *
Q->rq * Q->cosb1);
Q->ymf = (Q->xmf = Q->rq) / Q->dd;
Q->xmf *= Q->dd;
break;
}
P->inv = laea_e_inverse;
P->fwd = laea_e_forward;
} else {
if (Q->mode == OBLIQ) {
Q->sinb1 = sin(P->phi0);
Q->cosb1 = cos(P->phi0);
}
P->inv = laea_s_inverse;
P->fwd = laea_s_forward;
}
return P;
}
|