aboutsummaryrefslogtreecommitdiff
path: root/src/projections/ortho.cpp
blob: 908f283d4e164fc18b431c87f7fbce7c214435b7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#define PJ_LIB__
#include <errno.h>
#include "proj.h"
#include "proj_internal.h"
#include <math.h>

PROJ_HEAD(ortho, "Orthographic") "\n\tAzi, Sph&Ell";

namespace { // anonymous namespace
enum Mode {
    N_POLE = 0,
    S_POLE = 1,
    EQUIT  = 2,
    OBLIQ  = 3
};
} // anonymous namespace

namespace { // anonymous namespace
struct pj_opaque {
    double  sinph0;
    double  cosph0;
    double  nu0;
    double  y_shift;
    double  y_scale;
    enum Mode mode;
};
} // anonymous namespace

#define EPS10 1.e-10

static PJ_XY forward_error(PJ *P, PJ_LP lp, PJ_XY xy) {
    proj_errno_set(P, PROJ_ERR_COORD_TRANSFM_OUTSIDE_PROJECTION_DOMAIN);
    proj_log_trace(P, "Coordinate (%.3f, %.3f) is on the unprojected hemisphere",
                   proj_todeg(lp.lam), proj_todeg(lp.phi));
    return xy;
}

static PJ_XY ortho_s_forward (PJ_LP lp, PJ *P) {           /* Spheroidal, forward */
    PJ_XY xy;
    struct pj_opaque *Q = static_cast<struct pj_opaque*>(P->opaque);
    double  coslam, cosphi, sinphi;

    xy.x = HUGE_VAL; xy.y = HUGE_VAL;

    cosphi = cos(lp.phi);
    coslam = cos(lp.lam);
    switch (Q->mode) {
    case EQUIT:
        if (cosphi * coslam < - EPS10)
            return forward_error(P, lp, xy);
        xy.y = sin(lp.phi);
        break;
    case OBLIQ:
        sinphi = sin(lp.phi);

        // Is the point visible from the projection plane ?
        // From https://lists.osgeo.org/pipermail/proj/2020-September/009831.html
        // this is the dot product of the normal of the ellipsoid at the center of
        // the projection and at the point considered for projection.
        // [cos(phi)*cos(lambda), cos(phi)*sin(lambda), sin(phi)]
        // Also from Snyder's Map Projection - A working manual, equation (5-3), page 149
        if (Q->sinph0 * sinphi + Q->cosph0 * cosphi * coslam < - EPS10)
            return forward_error(P, lp, xy);
        xy.y = Q->cosph0 * sinphi - Q->sinph0 * cosphi * coslam;
        break;
    case N_POLE:
        coslam = - coslam;
                /*-fallthrough*/
    case S_POLE:
        if (fabs(lp.phi - P->phi0) - EPS10 > M_HALFPI)
            return forward_error(P, lp, xy);
        xy.y = cosphi * coslam;
        break;
    }
    xy.x = cosphi * sin(lp.lam);
    return xy;
}


static PJ_LP ortho_s_inverse (PJ_XY xy, PJ *P) {           /* Spheroidal, inverse */
    PJ_LP lp;
    struct pj_opaque *Q = static_cast<struct pj_opaque*>(P->opaque);
    double sinc;

    lp.lam = HUGE_VAL; lp.phi = HUGE_VAL;

    const double rh = hypot(xy.x, xy.y);
    sinc = rh;
    if (sinc > 1.) {
        if ((sinc - 1.) > EPS10) {
            proj_errno_set(P, PROJ_ERR_COORD_TRANSFM_OUTSIDE_PROJECTION_DOMAIN);
            return lp;
        }
        sinc = 1.;
    }
    const double cosc = sqrt(1. - sinc * sinc); /* in this range OK */
    if (fabs(rh) <= EPS10) {
        lp.phi = P->phi0;
        lp.lam = 0.0;
    } else {
        switch (Q->mode) {
        case N_POLE:
            xy.y = -xy.y;
            lp.phi = acos(sinc);
            break;
        case S_POLE:
            lp.phi = - acos(sinc);
            break;
        case EQUIT:
            lp.phi = xy.y * sinc / rh;
            xy.x *= sinc;
            xy.y = cosc * rh;
            goto sinchk;
        case OBLIQ:
            lp.phi = cosc * Q->sinph0 + xy.y * sinc * Q->cosph0 /rh;
            xy.y = (cosc - Q->sinph0 * lp.phi) * rh;
            xy.x *= sinc * Q->cosph0;
        sinchk:
            if (fabs(lp.phi) >= 1.)
                lp.phi = lp.phi < 0. ? -M_HALFPI : M_HALFPI;
            else
                lp.phi = asin(lp.phi);
            break;
        }
        lp.lam = (xy.y == 0. && (Q->mode == OBLIQ || Q->mode == EQUIT))
             ? (xy.x == 0. ? 0. : xy.x < 0. ? -M_HALFPI : M_HALFPI)
                           : atan2(xy.x, xy.y);
    }
    return lp;
}


static PJ_XY ortho_e_forward (PJ_LP lp, PJ *P) {           /* Ellipsoidal, forward */
    PJ_XY xy;
    struct pj_opaque *Q = static_cast<struct pj_opaque*>(P->opaque);

    // From EPSG guidance note 7.2, March 2020, §3.3.5 Orthographic
    const double cosphi = cos(lp.phi);
    const double sinphi = sin(lp.phi);
    const double coslam = cos(lp.lam);
    const double sinlam = sin(lp.lam);

    // Is the point visible from the projection plane ?
    // Same condition as in spherical case
    if (Q->sinph0 * sinphi + Q->cosph0 * cosphi * coslam < - EPS10) {
        xy.x = HUGE_VAL; xy.y = HUGE_VAL;
        return forward_error(P, lp, xy);
    }

    const double nu = 1.0 / sqrt(1.0 - P->es * sinphi * sinphi);
    xy.x = nu * cosphi * sinlam;
    xy.y = nu * (sinphi * Q->cosph0 - cosphi * Q->sinph0 * coslam) +
            P->es * (Q->nu0 * Q->sinph0 - nu * sinphi) * Q->cosph0;

    return xy;
}


static PJ_LP ortho_e_inverse (PJ_XY xy, PJ *P) {           /* Ellipsoidal, inverse */
    PJ_LP lp;
    struct pj_opaque *Q = static_cast<struct pj_opaque*>(P->opaque);

    const auto SQ = [](double x) { return x*x; };

    if( Q->mode == N_POLE || Q->mode == S_POLE )
    {
        // Polar case. Forward case equations can be simplified as:
        // xy.x = nu * cosphi * sinlam
        // xy.y = nu * -cosphi * coslam * sign(phi0)
        // ==> lam = atan2(xy.x, -xy.y * sign(phi0))
        // ==> xy.x^2 + xy.y^2 = nu^2 * cosphi^2
        //                rh^2 = cosphi^2 / (1 - es * sinphi^2)
        // ==>  cosphi^2 = rh^2 * (1 - es) / (1 - es * rh^2)

        const double rh2 = SQ(xy.x) + SQ(xy.y);
        if (rh2 >= 1. - 1e-15) {
            if ((rh2 - 1.) > EPS10) {
                proj_errno_set(P, PROJ_ERR_COORD_TRANSFM_OUTSIDE_PROJECTION_DOMAIN);
                lp.lam = HUGE_VAL; lp.phi = HUGE_VAL;
                return lp;
            }
            lp.phi = 0;
        }
        else {
            lp.phi = acos(sqrt(rh2 * P->one_es / (1 - P->es * rh2))) * (Q->mode == N_POLE ? 1 : -1);
        }
        lp.lam = atan2(xy.x, xy.y * (Q->mode == N_POLE ? -1 : 1));
        return lp;
    }

    if( Q->mode == EQUIT )
    {
        // Equatorial case. Forward case equations can be simplified as:
        // xy.x = nu * cosphi * sinlam
        // xy.y  = nu * sinphi * (1 - P->es)
        // x^2 * (1 - es * sinphi^2) = (1 - sinphi^2) * sinlam^2
        // y^2 / ((1 - es)^2 + y^2 * es) = sinphi^2

        // Equation of the ellipse
        if( SQ(xy.x) + SQ(xy.y * (P->a / P->b)) > 1 + 1e-11 ) {
            proj_errno_set(P, PROJ_ERR_COORD_TRANSFM_OUTSIDE_PROJECTION_DOMAIN);
            lp.lam = HUGE_VAL; lp.phi = HUGE_VAL;
            return lp;
        }

        const double sinphi2 = xy.y == 0 ? 0 : 1.0 / (SQ((1 - P->es) / xy.y) + P->es);
        if( sinphi2 > 1 - 1e-11 ) {
            lp.phi = M_PI_2 * (xy.y > 0 ? 1 : -1);
            lp.lam = 0;
            return lp;
        }
        lp.phi = asin(sqrt(sinphi2)) * (xy.y > 0 ? 1 : -1);
        const double sinlam = xy.x * sqrt((1 - P->es * sinphi2) / (1 - sinphi2));
        if( fabs(sinlam) - 1 > -1e-15 )
            lp.lam = M_PI_2 * (xy.x > 0 ? 1: -1);
        else
            lp.lam = asin(sinlam);
        return lp;
    }

    // Using Q->sinph0 * sinphi + Q->cosph0 * cosphi * coslam == 0 (visibity
    // condition of the forward case) in the forward equations, and a lot of
    // substitution games...
    PJ_XY xy_recentered;
    xy_recentered.x = xy.x;
    xy_recentered.y = (xy.y - Q->y_shift) / Q->y_scale;
    if( SQ(xy.x) + SQ(xy_recentered.y) > 1 + 1e-11 ) {
        proj_errno_set(P, PROJ_ERR_COORD_TRANSFM_OUTSIDE_PROJECTION_DOMAIN);
        lp.lam = HUGE_VAL; lp.phi = HUGE_VAL;
        return lp;
    }

    // From EPSG guidance note 7.2, March 2020, §3.3.5 Orthographic

    // It suggests as initial guess:
    // lp.lam = 0;
    // lp.phi = P->phi0;
    // But for poles, this will not converge well. Better use:
    lp = ortho_s_inverse(xy_recentered, P);

    for( int i = 0; i < 20; i++ )
    {
        const double cosphi = cos(lp.phi);
        const double sinphi = sin(lp.phi);
        const double coslam = cos(lp.lam);
        const double sinlam = sin(lp.lam);
        const double one_minus_es_sinphi2 = 1.0 - P->es * sinphi * sinphi;
        const double nu = 1.0 / sqrt(one_minus_es_sinphi2);
        PJ_XY xy_new;
        xy_new.x = nu * cosphi * sinlam;
        xy_new.y = nu * (sinphi * Q->cosph0 - cosphi * Q->sinph0 * coslam) +
                P->es * (Q->nu0 * Q->sinph0 - nu * sinphi) * Q->cosph0;
        const double rho = (1.0 - P->es) * nu / one_minus_es_sinphi2;
        const double J11 = -rho * sinphi * sinlam;
        const double J12 = nu * cosphi * coslam;
        const double J21 = rho * (cosphi * Q->cosph0 + sinphi * Q->sinph0 * coslam);
        const double J22 = nu * Q->sinph0 * Q->cosph0 * sinlam;
        const double D = J11 * J22 - J12 * J21;
        const double dx = xy.x - xy_new.x;
        const double dy = xy.y - xy_new.y;
        const double dphi = (J22 * dx - J12 * dy) / D;
        const double dlam = (-J21 * dx + J11 * dy) / D;
        lp.phi += dphi;
        if( lp.phi > M_PI_2) lp.phi = M_PI_2;
        else if( lp.phi < -M_PI_2) lp.phi = -M_PI_2;
        lp.lam += dlam;
        if( fabs(dphi) < 1e-12 && fabs(dlam) < 1e-12 )
        {
            return lp;
        }
    }
    proj_context_errno_set(P->ctx, PROJ_ERR_COORD_TRANSFM_OUTSIDE_PROJECTION_DOMAIN);
    return lp;
}


PJ *PROJECTION(ortho) {
    struct pj_opaque *Q = static_cast<struct pj_opaque*>(calloc (1, sizeof (struct pj_opaque)));
    if (nullptr==Q)
        return pj_default_destructor(P, PROJ_ERR_OTHER /*ENOMEM*/);
    P->opaque = Q;

    Q->sinph0 = sin(P->phi0);
    Q->cosph0 = cos(P->phi0);
    if (fabs(fabs(P->phi0) - M_HALFPI) <= EPS10)
        Q->mode = P->phi0 < 0. ? S_POLE : N_POLE;
    else if (fabs(P->phi0) > EPS10) {
        Q->mode = OBLIQ;
    } else
        Q->mode = EQUIT;
    if( P->es == 0 )
    {
        P->inv = ortho_s_inverse;
        P->fwd = ortho_s_forward;
    }
    else
    {
        Q->nu0 = 1.0 / sqrt(1.0 - P->es * Q->sinph0 * Q->sinph0);
        Q->y_shift = P->es * Q->nu0 * Q->sinph0 * Q->cosph0;
        Q->y_scale = 1.0 / sqrt(1.0 - P->es * Q->cosph0 * Q->cosph0);
        P->inv = ortho_e_inverse;
        P->fwd = ortho_e_forward;
    }

    return P;
}