1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
|
#define PJ_LIB__
#include <errno.h>
#include "proj.h"
#include "proj_internal.h"
#include <math.h>
PROJ_HEAD(ortho, "Orthographic") "\n\tAzi, Sph";
namespace { // anonymous namespace
enum Mode {
N_POLE = 0,
S_POLE = 1,
EQUIT = 2,
OBLIQ = 3
};
} // anonymous namespace
namespace { // anonymous namespace
struct pj_opaque {
double sinph0;
double cosph0;
enum Mode mode;
};
} // anonymous namespace
#define EPS10 1.e-10
static PJ_XY forward_error(PJ *P, PJ_LP lp, PJ_XY xy) {
proj_errno_set(P, PJD_ERR_TOLERANCE_CONDITION);
proj_log_trace(P, "Coordinate (%.3f, %.3f) is on the unprojected hemisphere",
proj_todeg(lp.lam), proj_todeg(lp.phi));
return xy;
}
static PJ_XY ortho_s_forward (PJ_LP lp, PJ *P) { /* Spheroidal, forward */
PJ_XY xy;
struct pj_opaque *Q = static_cast<struct pj_opaque*>(P->opaque);
double coslam, cosphi, sinphi;
xy.x = HUGE_VAL; xy.y = HUGE_VAL;
cosphi = cos(lp.phi);
coslam = cos(lp.lam);
switch (Q->mode) {
case EQUIT:
if (cosphi * coslam < - EPS10)
return forward_error(P, lp, xy);
xy.y = sin(lp.phi);
break;
case OBLIQ:
if (Q->sinph0 * (sinphi = sin(lp.phi)) + Q->cosph0 * cosphi * coslam < - EPS10)
return forward_error(P, lp, xy);
xy.y = Q->cosph0 * sinphi - Q->sinph0 * cosphi * coslam;
break;
case N_POLE:
coslam = - coslam;
/*-fallthrough*/
case S_POLE:
if (fabs(lp.phi - P->phi0) - EPS10 > M_HALFPI)
return forward_error(P, lp, xy);
xy.y = cosphi * coslam;
break;
}
xy.x = cosphi * sin(lp.lam);
return xy;
}
static PJ_LP ortho_s_inverse (PJ_XY xy, PJ *P) { /* Spheroidal, inverse */
PJ_LP lp;
struct pj_opaque *Q = static_cast<struct pj_opaque*>(P->opaque);
double rh, cosc, sinc;
lp.lam = HUGE_VAL; lp.phi = HUGE_VAL;
if ((sinc = (rh = hypot(xy.x, xy.y))) > 1.) {
if ((sinc - 1.) > EPS10) {
proj_errno_set(P, PJD_ERR_TOLERANCE_CONDITION);
proj_log_trace(P, "Point (%.3f, %.3f) is outside the projection boundary");
return lp;
}
sinc = 1.;
}
cosc = sqrt(1. - sinc * sinc); /* in this range OK */
if (fabs(rh) <= EPS10) {
lp.phi = P->phi0;
lp.lam = 0.0;
} else {
switch (Q->mode) {
case N_POLE:
xy.y = -xy.y;
lp.phi = acos(sinc);
break;
case S_POLE:
lp.phi = - acos(sinc);
break;
case EQUIT:
lp.phi = xy.y * sinc / rh;
xy.x *= sinc;
xy.y = cosc * rh;
goto sinchk;
case OBLIQ:
lp.phi = cosc * Q->sinph0 + xy.y * sinc * Q->cosph0 /rh;
xy.y = (cosc - Q->sinph0 * lp.phi) * rh;
xy.x *= sinc * Q->cosph0;
sinchk:
if (fabs(lp.phi) >= 1.)
lp.phi = lp.phi < 0. ? -M_HALFPI : M_HALFPI;
else
lp.phi = asin(lp.phi);
break;
}
lp.lam = (xy.y == 0. && (Q->mode == OBLIQ || Q->mode == EQUIT))
? (xy.x == 0. ? 0. : xy.x < 0. ? -M_HALFPI : M_HALFPI)
: atan2(xy.x, xy.y);
}
return lp;
}
PJ *PROJECTION(ortho) {
struct pj_opaque *Q = static_cast<struct pj_opaque*>(pj_calloc (1, sizeof (struct pj_opaque)));
if (nullptr==Q)
return pj_default_destructor(P, ENOMEM);
P->opaque = Q;
if (fabs(fabs(P->phi0) - M_HALFPI) <= EPS10)
Q->mode = P->phi0 < 0. ? S_POLE : N_POLE;
else if (fabs(P->phi0) > EPS10) {
Q->mode = OBLIQ;
Q->sinph0 = sin(P->phi0);
Q->cosph0 = cos(P->phi0);
} else
Q->mode = EQUIT;
P->inv = ortho_s_inverse;
P->fwd = ortho_s_forward;
P->es = 0.;
return P;
}
|