1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
#define PJ_LIB__
#include "proj.h"
#include "proj_internal.h"
PROJ_HEAD(vandg, "van der Grinten (I)") "\n\tMisc Sph";
# define TOL 1.e-10
# define THIRD .33333333333333333333
# define C2_27 .07407407407407407407 // 2/27
# define PI4_3 4.18879020478639098458 // 4*pi/3
# define PISQ 9.86960440108935861869 // pi^2
# define TPISQ 19.73920880217871723738 // 2*pi^2
# define HPISQ 4.93480220054467930934 // pi^2/2
static PJ_XY vandg_s_forward (PJ_LP lp, PJ *P) { /* Spheroidal, forward */
PJ_XY xy = {0.0,0.0};
double al, al2, g, g2, p2;
// Comments tie this formulation to Snyder (1987), p. 241.
p2 = fabs(lp.phi / M_HALFPI); // sin(theta) from (29-6)
if ((p2 - TOL) > 1.) {
proj_errno_set(P, PROJ_ERR_COORD_TRANSFM_OUTSIDE_PROJECTION_DOMAIN);
return xy;
}
if (p2 > 1.)
p2 = 1.;
if (fabs(lp.phi) <= TOL) {
xy.x = lp.lam;
xy.y = 0.;
} else if (fabs(lp.lam) <= TOL || fabs(p2 - 1.) < TOL) {
xy.x = 0.;
xy.y = M_PI * tan(.5 * asin(p2));
if (lp.phi < 0.) xy.y = -xy.y;
} else {
al = .5 * fabs(M_PI / lp.lam - lp.lam / M_PI); // A from (29-3)
al2 = al * al; // A^2
g = sqrt(1. - p2 * p2); // cos(theta)
g = g / (p2 + g - 1.); // G from (29-4)
g2 = g * g; // G^2
p2 = g * (2. / p2 - 1.); // P from (29-5)
p2 = p2 * p2; // P^2
{
// Force floating-point computations done on 80 bit on
// i386 to go back to 64 bit. This is to avoid the test failures
// of https://github.com/OSGeo/PROJ/issues/1906#issuecomment-583168348
// The choice of p2 is completely arbitrary.
volatile double p2_tmp = p2;
p2 = p2_tmp;
}
xy.x = g - p2; // G - P^2
g = p2 + al2; // P^2 + A^2
// (29-1)
xy.x = M_PI * (al * xy.x + sqrt(al2 * xy.x * xy.x - g * (g2 - p2))) / g;
if (lp.lam < 0.) xy.x = -xy.x;
xy.y = fabs(xy.x / M_PI);
// y from (29-2) has been expressed in terms of x here
xy.y = 1. - xy.y * (xy.y + 2. * al);
if (xy.y < -TOL) {
proj_errno_set(P, PROJ_ERR_COORD_TRANSFM_OUTSIDE_PROJECTION_DOMAIN);
return xy;
}
if (xy.y < 0.)
xy.y = 0.;
else
xy.y = sqrt(xy.y) * (lp.phi < 0. ? -M_PI : M_PI);
}
return xy;
}
static PJ_LP vandg_s_inverse (PJ_XY xy, PJ *P) { /* Spheroidal, inverse */
PJ_LP lp = {0.0,0.0};
double t, c0, c1, c2, c3, al, r2, r, m, d, ay, x2, y2;
// Comments tie this formulation to Snyder (1987), p. 242.
x2 = xy.x * xy.x; // pi^2 * X^2
if ((ay = fabs(xy.y)) < TOL) {
lp.phi = 0.;
t = x2 * x2 + TPISQ * (x2 + HPISQ);
lp.lam = fabs(xy.x) <= TOL ? 0. :
.5 * (x2 - PISQ + sqrt(t)) / xy.x;
return (lp);
}
y2 = xy.y * xy.y; // pi^2 * Y^2
r = x2 + y2; // pi^2 * (X^2+Y^2)
r2 = r * r; // pi^4 * (X^2+Y^2)^2
c1 = - M_PI * ay * (r + PISQ); // pi^4 * c1 (29-11)
// pi^4 * c3 (29-13)
c3 = r2 + M_TWOPI * (ay * r + M_PI * (y2 + M_PI * (ay + M_HALFPI)));
c2 = c1 + PISQ * (r - 3. * y2); // pi^4 * c2 (29-12)
c0 = M_PI * ay; // pi^2 * Y
c2 /= c3; // c2/c3
al = c1 / c3 - THIRD * c2 * c2; // a1 (29-15)
m = 2. * sqrt(-THIRD * al); // m1 (29-16)
d = C2_27 * c2 * c2 * c2 + (c0 * c0 - THIRD * c2 * c1) / c3; // d (29-14)
const double al_mul_m = al * m; // a1*m1
if( fabs(al_mul_m) < 1e-16 ) {
proj_errno_set(P, PROJ_ERR_COORD_TRANSFM_OUTSIDE_PROJECTION_DOMAIN);
return proj_coord_error().lp;
}
d = 3. * d /al_mul_m; // cos(3*theta1) (29-17)
t = fabs(d);
if ((t - TOL) <= 1.) {
d = t > 1. ? (d > 0. ? 0. : M_PI) : acos(d); // 3*theta1 (29-17)
// (29-18) but change pi/3 to 4*pi/3 to flip sign of cos
lp.phi = M_PI * (m * cos(d * THIRD + PI4_3) - THIRD * c2);
if (xy.y < 0.) lp.phi = -lp.phi;
t = r2 + TPISQ * (x2 - y2 + HPISQ);
lp.lam = fabs(xy.x) <= TOL ? 0. :
.5 * (r - PISQ + (t <= 0. ? 0. : sqrt(t))) / xy.x;
} else {
proj_errno_set(P, PROJ_ERR_COORD_TRANSFM_OUTSIDE_PROJECTION_DOMAIN);
return lp;
}
return lp;
}
PJ *PROJECTION(vandg) {
P->es = 0.;
P->inv = vandg_s_inverse;
P->fwd = vandg_s_forward;
return P;
}
|