1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
|
/***********************************************************************
3-, 4-and 7-parameter shifts, and their 6-, 8-
and 14-parameter kinematic counterparts.
Thomas Knudsen, 2016-05-24
************************************************************************
Implements 3(6)-, 4(8) and 7(14)-parameter Helmert transformations for
3D data.
Also incorporates Molodensky-Badekas variant of 7-parameter Helmert
transformation, where the rotation is not applied regarding the centre
of the spheroid, but given a reference point.
Primarily useful for implementation of datum shifts in transformation
pipelines.
************************************************************************
Thomas Knudsen, thokn@sdfe.dk, 2016-05-24/06-05
Kristian Evers, kreve@sdfe.dk, 2017-05-01
Even Rouault, even.roault@spatialys.com
Last update: 2018-10-26
************************************************************************
* Copyright (c) 2016, Thomas Knudsen / SDFE
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
***********************************************************************/
#define PJ_LIB__
#include <errno.h>
#include <math.h>
#include "proj_internal.h"
PROJ_HEAD(helmert, "3(6)-, 4(8)- and 7(14)-parameter Helmert shift");
PROJ_HEAD(molobadekas, "Molodensky-Badekas transformation");
static PJ_XYZ helmert_forward_3d (PJ_LPZ lpz, PJ *P);
static PJ_LPZ helmert_reverse_3d (PJ_XYZ xyz, PJ *P);
/***********************************************************************/
namespace { // anonymous namespace
struct pj_opaque_helmert {
/************************************************************************
Projection specific elements for the "helmert" PJ object
************************************************************************/
PJ_XYZ xyz;
PJ_XYZ xyz_0;
PJ_XYZ dxyz;
PJ_XYZ refp;
PJ_OPK opk;
PJ_OPK opk_0;
PJ_OPK dopk;
double scale;
double scale_0;
double dscale;
double theta;
double theta_0;
double dtheta;
double R[3][3];
double t_epoch, t_obs;
int no_rotation, exact, fourparam;
int is_position_vector; /* 1 = position_vector, 0 = coordinate_frame */
};
} // anonymous namespace
/* Make the maths of the rotation operations somewhat more readable and textbook like */
#define R00 (Q->R[0][0])
#define R01 (Q->R[0][1])
#define R02 (Q->R[0][2])
#define R10 (Q->R[1][0])
#define R11 (Q->R[1][1])
#define R12 (Q->R[1][2])
#define R20 (Q->R[2][0])
#define R21 (Q->R[2][1])
#define R22 (Q->R[2][2])
/**************************************************************************/
static void update_parameters(PJ *P) {
/***************************************************************************
Update transformation parameters.
---------------------------------
The 14-parameter Helmert transformation is at it's core the same as the
7-parameter transformation, since the transformation parameters are
projected forward or backwards in time via the rate of changes of the
parameters. The transformation parameters are calculated for a specific
epoch before the actual Helmert transformation is carried out.
The transformation parameters are updated with the following equation [0]:
.
P(t) = P(EPOCH) + P * (t - EPOCH)
.
where EPOCH is the epoch indicated in the above table and P is the rate
of that parameter.
[0] http://itrf.ign.fr/doc_ITRF/Transfo-ITRF2008_ITRFs.txt
*******************************************************************************/
struct pj_opaque_helmert *Q = (struct pj_opaque_helmert *) P->opaque;
double dt = Q->t_obs - Q->t_epoch;
Q->xyz.x = Q->xyz_0.x + Q->dxyz.x * dt;
Q->xyz.y = Q->xyz_0.y + Q->dxyz.y * dt;
Q->xyz.z = Q->xyz_0.z + Q->dxyz.z * dt;
Q->opk.o = Q->opk_0.o + Q->dopk.o * dt;
Q->opk.p = Q->opk_0.p + Q->dopk.p * dt;
Q->opk.k = Q->opk_0.k + Q->dopk.k * dt;
Q->scale = Q->scale_0 + Q->dscale * dt;
Q->theta = Q->theta_0 + Q->dtheta * dt;
/* debugging output */
if (proj_log_level(P->ctx, PJ_LOG_TELL) >= PJ_LOG_TRACE) {
proj_log_trace(P, "Transformation parameters for observation "
"t_obs=%g (t_epoch=%g):", Q->t_obs, Q->t_epoch);
proj_log_trace(P, "x: %g", Q->xyz.x);
proj_log_trace(P, "y: %g", Q->xyz.y);
proj_log_trace(P, "z: %g", Q->xyz.z);
proj_log_trace(P, "s: %g", Q->scale*1e-6);
proj_log_trace(P, "rx: %g", Q->opk.o);
proj_log_trace(P, "ry: %g", Q->opk.p);
proj_log_trace(P, "rz: %g", Q->opk.k);
proj_log_trace(P, "theta: %g", Q->theta);
}
}
/**************************************************************************/
static void build_rot_matrix(PJ *P) {
/***************************************************************************
Build rotation matrix.
----------------------
Here we rename rotation indices from omega, phi, kappa (opk), to
fi (i.e. phi), theta, psi (ftp), in order to reduce the mental agility
needed to implement the expression for the rotation matrix derived over
at https://en.wikipedia.org/wiki/Rotation_formalisms_in_three_dimensions
The relevant section is Euler angles ( z-’-x" intrinsic) -> Rotation matrix
By default small angle approximations are used:
The matrix elements are approximated by expanding the trigonometric
functions to linear order (i.e. cos(x) = 1, sin(x) = x), and discarding
products of second order.
This was a useful hack when calculating by hand was the only option,
but in general, today, should be avoided because:
1. It does not save much computation time, as the rotation matrix
is built only once and probably used many times (except when
transforming spatio-temporal coordinates).
2. The error induced may be too large for ultra high accuracy
applications: the Earth is huge and the linear error is
approximately the angular error multiplied by the Earth radius.
However, in many cases the approximation is necessary, since it has
been used historically: Rotation angles from older published datum
shifts may actually be a least squares fit to the linearized rotation
approximation, hence not being strictly valid for deriving the exact
rotation matrix. In fact, most publicly available transformation
parameters are based on the approximate Helmert transform, which is why
we use that as the default setting, even though it is more correct to
use the exact form of the equations.
So in order to fit historically derived coordinates, the access to
the approximate rotation matrix is necessary - at least in principle.
Also, when using any published datum transformation information, one
should always check which convention (exact or approximate rotation
matrix) is expected, and whether the induced error for selecting
the opposite convention is acceptable (which it often is).
Sign conventions
----------------
Take care: Two different sign conventions exist for the rotation terms.
Conceptually they relate to whether we rotate the coordinate system
or the "position vector" (the vector going from the coordinate system
origin to the point being transformed, i.e. the point coordinates
interpreted as vector coordinates).
Switching between the "position vector" and "coordinate system"
conventions is simply a matter of switching the sign of the rotation
angles, which algebraically also translates into a transposition of
the rotation matrix.
Hence, as geodetic constants should preferably be referred to exactly
as published, the "convention" option provides the ability to switch
between the conventions.
***************************************************************************/
struct pj_opaque_helmert *Q = (struct pj_opaque_helmert *) P->opaque;
double f, t, p; /* phi/fi , theta, psi */
double cf, ct, cp; /* cos (fi, theta, psi) */
double sf, st, sp; /* sin (fi, theta, psi) */
/* rename (omega, phi, kappa) to (fi, theta, psi) */
f = Q->opk.o;
t = Q->opk.p;
p = Q->opk.k;
/* Those equations are given assuming coordinate frame convention. */
/* For the position vector convention, we transpose the matrix just after. */
if (Q->exact) {
cf = cos(f);
sf = sin(f);
ct = cos(t);
st = sin(t);
cp = cos(p);
sp = sin(p);
R00 = ct*cp;
R01 = cf*sp + sf*st*cp;
R02 = sf*sp - cf*st*cp;
R10 = -ct*sp;
R11 = cf*cp - sf*st*sp;
R12 = sf*cp + cf*st*sp;
R20 = st;
R21 = -sf*ct;
R22 = cf*ct;
} else{
R00 = 1;
R01 = p;
R02 = -t;
R10 = -p;
R11 = 1;
R12 = f;
R20 = t;
R21 = -f;
R22 = 1;
}
/*
For comparison: Description from Engsager/Poder implementation
in set_dtm_1.c (trlib)
DATUM SHIFT:
TO = scale * ROTZ * ROTY * ROTX * FROM + TRANSLA
( cz sz 0) (cy 0 -sy) (1 0 0)
ROTZ=(-sz cz 0), ROTY=(0 1 0), ROTX=(0 cx sx)
( 0 0 1) (sy 0 cy) (0 -sx cx)
trp->r11 = cos_ry*cos_rz;
trp->r12 = cos_rx*sin_rz + sin_rx*sin_ry*cos_rz;
trp->r13 = sin_rx*sin_rz - cos_rx*sin_ry*cos_rz;
trp->r21 = -cos_ry*sin_rz;
trp->r22 = cos_rx*cos_rz - sin_rx*sin_ry*sin_rz;
trp->r23 = sin_rx*cos_rz + cos_rx*sin_ry*sin_rz;
trp->r31 = sin_ry;
trp->r32 = -sin_rx*cos_ry;
trp->r33 = cos_rx*cos_ry;
trp->scale = 1.0 + scale;
*/
if (Q->is_position_vector) {
double r;
r = R01; R01 = R10; R10 = r;
r = R02; R02 = R20; R20 = r;
r = R12; R12 = R21; R21 = r;
}
/* some debugging output */
if (proj_log_level(P->ctx, PJ_LOG_TELL) >= PJ_LOG_TRACE) {
proj_log_trace(P, "Rotation Matrix:");
proj_log_trace(P, " | % 6.6g % 6.6g % 6.6g |", R00, R01, R02);
proj_log_trace(P, " | % 6.6g % 6.6g % 6.6g |", R10, R11, R12);
proj_log_trace(P, " | % 6.6g % 6.6g % 6.6g |", R20, R21, R22);
}
}
/***********************************************************************/
static PJ_XY helmert_forward (PJ_LP lp, PJ *P) {
/***********************************************************************/
struct pj_opaque_helmert *Q = (struct pj_opaque_helmert *) P->opaque;
PJ_COORD point = {{0,0,0,0}};
double x, y, cr, sr;
point.lp = lp;
cr = cos(Q->theta) * Q->scale;
sr = sin(Q->theta) * Q->scale;
x = point.xy.x;
y = point.xy.y;
point.xy.x = cr*x + sr*y + Q->xyz_0.x;
point.xy.y = -sr*x + cr*y + Q->xyz_0.y;
return point.xy;
}
/***********************************************************************/
static PJ_LP helmert_reverse (PJ_XY xy, PJ *P) {
/***********************************************************************/
struct pj_opaque_helmert *Q = (struct pj_opaque_helmert *) P->opaque;
PJ_COORD point = {{0,0,0,0}};
double x, y, sr, cr;
point.xy = xy;
cr = cos(Q->theta) / Q->scale;
sr = sin(Q->theta) / Q->scale;
x = point.xy.x - Q->xyz_0.x;
y = point.xy.y - Q->xyz_0.y;
point.xy.x = x*cr - y*sr;
point.xy.y = x*sr + y*cr;
return point.lp;
}
/***********************************************************************/
static PJ_XYZ helmert_forward_3d (PJ_LPZ lpz, PJ *P) {
/***********************************************************************/
struct pj_opaque_helmert *Q = (struct pj_opaque_helmert *) P->opaque;
PJ_COORD point = {{0,0,0,0}};
double X, Y, Z, scale;
point.lpz = lpz;
if (Q->fourparam) {
point.xy = helmert_forward(point.lp, P);
return point.xyz;
}
if (Q->no_rotation && Q->scale == 0) {
point.xyz.x = lpz.lam + Q->xyz.x;
point.xyz.y = lpz.phi + Q->xyz.y;
point.xyz.z = lpz.z + Q->xyz.z;
return point.xyz;
}
scale = 1 + Q->scale * 1e-6;
X = lpz.lam - Q->refp.x;
Y = lpz.phi - Q->refp.y;
Z = lpz.z - Q->refp.z;
point.xyz.x = scale * ( R00 * X + R01 * Y + R02 * Z);
point.xyz.y = scale * ( R10 * X + R11 * Y + R12 * Z);
point.xyz.z = scale * ( R20 * X + R21 * Y + R22 * Z);
point.xyz.x += Q->xyz.x; /* for Molodensky-Badekas, Q->xyz already incorporates the Q->refp offset */
point.xyz.y += Q->xyz.y;
point.xyz.z += Q->xyz.z;
return point.xyz;
}
/***********************************************************************/
static PJ_LPZ helmert_reverse_3d (PJ_XYZ xyz, PJ *P) {
/***********************************************************************/
struct pj_opaque_helmert *Q = (struct pj_opaque_helmert *) P->opaque;
PJ_COORD point = {{0,0,0,0}};
double X, Y, Z, scale;
point.xyz = xyz;
if (Q->fourparam) {
point.lp = helmert_reverse(point.xy, P);
return point.lpz;
}
if (Q->no_rotation && Q->scale == 0) {
point.xyz.x = xyz.x - Q->xyz.x;
point.xyz.y = xyz.y - Q->xyz.y;
point.xyz.z = xyz.z - Q->xyz.z;
return point.lpz;
}
scale = 1 + Q->scale * 1e-6;
/* Unscale and deoffset */
X = (xyz.x - Q->xyz.x) / scale;
Y = (xyz.y - Q->xyz.y) / scale;
Z = (xyz.z - Q->xyz.z) / scale;
/* Inverse rotation through transpose multiplication */
point.xyz.x = ( R00 * X + R10 * Y + R20 * Z) + Q->refp.x;
point.xyz.y = ( R01 * X + R11 * Y + R21 * Z) + Q->refp.y;
point.xyz.z = ( R02 * X + R12 * Y + R22 * Z) + Q->refp.z;
return point.lpz;
}
static PJ_COORD helmert_forward_4d (PJ_COORD point, PJ *P) {
struct pj_opaque_helmert *Q = (struct pj_opaque_helmert *) P->opaque;
/* We only need to rebuild the rotation matrix if the
* observation time is different from the last call */
double t_obs = (point.xyzt.t == HUGE_VAL) ? Q->t_epoch : point.xyzt.t;
if (t_obs != Q->t_obs) {
Q->t_obs = t_obs;
update_parameters(P);
build_rot_matrix(P);
}
point.xyz = helmert_forward_3d (point.lpz, P);
return point;
}
static PJ_COORD helmert_reverse_4d (PJ_COORD point, PJ *P) {
struct pj_opaque_helmert *Q = (struct pj_opaque_helmert *) P->opaque;
/* We only need to rebuild the rotation matrix if the
* observation time is different from the last call */
double t_obs = (point.xyzt.t == HUGE_VAL) ? Q->t_epoch : point.xyzt.t;
if (t_obs != Q->t_obs) {
Q->t_obs = t_obs;
update_parameters(P);
build_rot_matrix(P);
}
point.lpz = helmert_reverse_3d (point.xyz, P);
return point;
}
/* Arcsecond to radians */
#define ARCSEC_TO_RAD (DEG_TO_RAD / 3600.0)
static PJ* init_helmert_six_parameters(PJ* P) {
struct pj_opaque_helmert *Q = static_cast<struct pj_opaque_helmert*>(calloc (1, sizeof (struct pj_opaque_helmert)));
if (nullptr==Q)
return pj_default_destructor (P, PROJ_ERR_OTHER /*ENOMEM*/);
P->opaque = (void *) Q;
/* In most cases, we work on 3D cartesian coordinates */
P->left = PJ_IO_UNITS_CARTESIAN;
P->right = PJ_IO_UNITS_CARTESIAN;
/* Translations */
if (pj_param (P->ctx, P->params, "tx").i)
Q->xyz_0.x = pj_param (P->ctx, P->params, "dx").f;
if (pj_param (P->ctx, P->params, "ty").i)
Q->xyz_0.y = pj_param (P->ctx, P->params, "dy").f;
if (pj_param (P->ctx, P->params, "tz").i)
Q->xyz_0.z = pj_param (P->ctx, P->params, "dz").f;
/* Rotations */
if (pj_param (P->ctx, P->params, "trx").i)
Q->opk_0.o = pj_param (P->ctx, P->params, "drx").f * ARCSEC_TO_RAD;
if (pj_param (P->ctx, P->params, "try").i)
Q->opk_0.p = pj_param (P->ctx, P->params, "dry").f * ARCSEC_TO_RAD;
if (pj_param (P->ctx, P->params, "trz").i)
Q->opk_0.k = pj_param (P->ctx, P->params, "drz").f * ARCSEC_TO_RAD;
/* Use small angle approximations? */
if (pj_param (P->ctx, P->params, "bexact").i)
Q->exact = 1;
return P;
}
static PJ* read_convention(PJ* P) {
struct pj_opaque_helmert *Q = (struct pj_opaque_helmert *)P->opaque;
/* In case there are rotational terms, we require an explicit convention
* to be provided. */
if (!Q->no_rotation) {
const char* convention = pj_param (P->ctx, P->params, "sconvention").s;
if( !convention ) {
proj_log_error (P, _("helmert: missing 'convention' argument"));
return pj_default_destructor (P, PROJ_ERR_INVALID_OP_MISSING_ARG);
}
if( strcmp(convention, "position_vector") == 0 ) {
Q->is_position_vector = 1;
}
else if( strcmp(convention, "coordinate_frame") == 0 ) {
Q->is_position_vector = 0;
}
else {
proj_log_error (P, _("helmert: invalid value for 'convention' argument"));
return pj_default_destructor (P, PROJ_ERR_INVALID_OP_ILLEGAL_ARG_VALUE);
}
/* historically towgs84 in PROJ has always been using position_vector
* convention. Accepting coordinate_frame would be confusing. */
if (pj_param_exists (P->params, "towgs84")) {
if( !Q->is_position_vector ) {
proj_log_error (P, _("helmert: towgs84 should only be used with "
"convention=position_vector"));
return pj_default_destructor (P, PROJ_ERR_INVALID_OP_ILLEGAL_ARG_VALUE);
}
}
}
return P;
}
/***********************************************************************/
PJ *TRANSFORMATION(helmert, 0) {
/***********************************************************************/
struct pj_opaque_helmert *Q;
if( !init_helmert_six_parameters(P) ) {
return nullptr;
}
/* In the 2D case, the coordinates are projected */
if (pj_param_exists (P->params, "theta")) {
P->left = PJ_IO_UNITS_PROJECTED;
P->right = PJ_IO_UNITS_PROJECTED;
P->fwd = helmert_forward;
P->inv = helmert_reverse;
}
P->fwd4d = helmert_forward_4d;
P->inv4d = helmert_reverse_4d;
P->fwd3d = helmert_forward_3d;
P->inv3d = helmert_reverse_3d;
Q = (struct pj_opaque_helmert *)P->opaque;
/* Detect obsolete transpose flag and error out if found */
if (pj_param (P->ctx, P->params, "ttranspose").i) {
proj_log_error (P, _("helmert: 'transpose' argument is no longer valid. "
"Use convention=position_vector/coordinate_frame"));
return pj_default_destructor (P, PROJ_ERR_INVALID_OP_ILLEGAL_ARG_VALUE);
}
/* Support the classic PROJ towgs84 parameter, but allow later overrides.*/
/* Note that if towgs84 is specified, the datum_params array is set up */
/* for us automagically by the pj_datum_set call in pj_init_ctx */
if (pj_param_exists (P->params, "towgs84")) {
Q->xyz_0.x = P->datum_params[0];
Q->xyz_0.y = P->datum_params[1];
Q->xyz_0.z = P->datum_params[2];
Q->opk_0.o = P->datum_params[3];
Q->opk_0.p = P->datum_params[4];
Q->opk_0.k = P->datum_params[5];
/* We must undo conversion to absolute scale from pj_datum_set */
if (0==P->datum_params[6])
Q->scale_0 = 0;
else
Q->scale_0 = (P->datum_params[6] - 1) * 1e6;
}
if (pj_param (P->ctx, P->params, "ttheta").i) {
Q->theta_0 = pj_param (P->ctx, P->params, "dtheta").f * ARCSEC_TO_RAD;
Q->fourparam = 1;
Q->scale_0 = 1.0; /* default scale for the 4-param shift */
}
/* Scale */
if (pj_param (P->ctx, P->params, "ts").i) {
Q->scale_0 = pj_param (P->ctx, P->params, "ds").f;
if( Q->scale_0 <= -1.0e6 )
{
proj_log_error (P, _("helmert: invalid value for s."));
return pj_default_destructor (P, PROJ_ERR_INVALID_OP_ILLEGAL_ARG_VALUE);
}
if (pj_param (P->ctx, P->params, "ttheta").i && Q->scale_0 == 0.0)
{
proj_log_error (P, _("helmert: invalid value for s."));
return pj_default_destructor (P, PROJ_ERR_INVALID_OP_ILLEGAL_ARG_VALUE);
}
}
/* Translation rates */
if (pj_param(P->ctx, P->params, "tdx").i)
Q->dxyz.x = pj_param (P->ctx, P->params, "ddx").f;
if (pj_param(P->ctx, P->params, "tdy").i)
Q->dxyz.y = pj_param (P->ctx, P->params, "ddy").f;
if (pj_param(P->ctx, P->params, "tdz").i)
Q->dxyz.z = pj_param (P->ctx, P->params, "ddz").f;
/* Rotations rates */
if (pj_param (P->ctx, P->params, "tdrx").i)
Q->dopk.o = pj_param (P->ctx, P->params, "ddrx").f * ARCSEC_TO_RAD;
if (pj_param (P->ctx, P->params, "tdry").i)
Q->dopk.p = pj_param (P->ctx, P->params, "ddry").f * ARCSEC_TO_RAD;
if (pj_param (P->ctx, P->params, "tdrz").i)
Q->dopk.k = pj_param (P->ctx, P->params, "ddrz").f * ARCSEC_TO_RAD;
if (pj_param (P->ctx, P->params, "tdtheta").i)
Q->dtheta = pj_param (P->ctx, P->params, "ddtheta").f * ARCSEC_TO_RAD;
/* Scale rate */
if (pj_param (P->ctx, P->params, "tds").i)
Q->dscale = pj_param (P->ctx, P->params, "dds").f;
/* Epoch */
if (pj_param(P->ctx, P->params, "tt_epoch").i)
Q->t_epoch = pj_param (P->ctx, P->params, "dt_epoch").f;
Q->xyz = Q->xyz_0;
Q->opk = Q->opk_0;
Q->scale = Q->scale_0;
Q->theta = Q->theta_0;
if ((Q->opk.o==0) && (Q->opk.p==0) && (Q->opk.k==0) &&
(Q->dopk.o==0) && (Q->dopk.p==0) && (Q->dopk.k==0)) {
Q->no_rotation = 1;
}
if( !read_convention(P) ) {
return nullptr;
}
/* Let's help with debugging */
if (proj_log_level(P->ctx, PJ_LOG_TELL) >= PJ_LOG_TRACE) {
proj_log_trace(P, "Helmert parameters:");
proj_log_trace(P, "x= %8.5f y= %8.5f z= %8.5f", Q->xyz.x, Q->xyz.y, Q->xyz.z);
proj_log_trace(P, "rx= %8.5f ry= %8.5f rz= %8.5f",
Q->opk.o / ARCSEC_TO_RAD, Q->opk.p / ARCSEC_TO_RAD, Q->opk.k / ARCSEC_TO_RAD);
proj_log_trace(P, "s= %8.5f exact=%d%s", Q->scale, Q->exact,
Q->no_rotation ? "" :
Q->is_position_vector ? " convention=position_vector" :
" convention=coordinate_frame");
proj_log_trace(P, "dx= %8.5f dy= %8.5f dz= %8.5f", Q->dxyz.x, Q->dxyz.y, Q->dxyz.z);
proj_log_trace(P, "drx=%8.5f dry=%8.5f drz=%8.5f", Q->dopk.o, Q->dopk.p, Q->dopk.k);
proj_log_trace(P, "ds= %8.5f t_epoch=%8.5f", Q->dscale, Q->t_epoch);
}
update_parameters(P);
build_rot_matrix(P);
return P;
}
/***********************************************************************/
PJ *TRANSFORMATION(molobadekas, 0) {
/***********************************************************************/
struct pj_opaque_helmert *Q;
if( !init_helmert_six_parameters(P) ) {
return nullptr;
}
P->fwd3d = helmert_forward_3d;
P->inv3d = helmert_reverse_3d;
Q = (struct pj_opaque_helmert *)P->opaque;
/* Scale */
if (pj_param (P->ctx, P->params, "ts").i) {
Q->scale_0 = pj_param (P->ctx, P->params, "ds").f;
}
Q->opk = Q->opk_0;
Q->scale = Q->scale_0;
if( !read_convention(P) ) {
return nullptr;
}
/* Reference point */
if (pj_param (P->ctx, P->params, "tpx").i)
Q->refp.x = pj_param (P->ctx, P->params, "dpx").f;
if (pj_param (P->ctx, P->params, "tpy").i)
Q->refp.y = pj_param (P->ctx, P->params, "dpy").f;
if (pj_param (P->ctx, P->params, "tpz").i)
Q->refp.z = pj_param (P->ctx, P->params, "dpz").f;
/* Let's help with debugging */
if (proj_log_level(P->ctx, PJ_LOG_TELL) >= PJ_LOG_TRACE) {
proj_log_trace(P, "Molodensky-Badekas parameters:");
proj_log_trace(P, "x= %8.5f y= %8.5f z= %8.5f", Q->xyz_0.x, Q->xyz_0.y, Q->xyz_0.z);
proj_log_trace(P, "rx= %8.5f ry= %8.5f rz= %8.5f",
Q->opk.o / ARCSEC_TO_RAD, Q->opk.p / ARCSEC_TO_RAD, Q->opk.k / ARCSEC_TO_RAD);
proj_log_trace(P, "s= %8.5f exact=%d%s", Q->scale, Q->exact,
Q->is_position_vector ? " convention=position_vector" :
" convention=coordinate_frame");
proj_log_trace(P, "px= %8.5f py= %8.5f pz= %8.5f", Q->refp.x, Q->refp.y, Q->refp.z);
}
/* as an optimization, we incorporate the refp in the translation terms */
Q->xyz_0.x += Q->refp.x;
Q->xyz_0.y += Q->refp.y;
Q->xyz_0.z += Q->refp.z;
Q->xyz = Q->xyz_0;
build_rot_matrix(P);
return P;
}
|