1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
|
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include "types.h"
#include "readline.h"
#include "reader.h"
#include "core.h"
// Declarations
MalVal *EVAL(MalVal *ast, Env *env);
// read
MalVal *READ(char prompt[], char *str) {
char *line;
MalVal *ast;
if (str) {
line = str;
} else {
line = _readline(prompt);
if (!line) {
_error("EOF");
return NULL;
}
}
ast = read_str(line);
if (!str) { free(line); }
return ast;
}
// eval
MalVal *eval_ast(MalVal *ast, Env *env) {
if (!ast || mal_error) return NULL;
if (ast->type == MAL_SYMBOL) {
//g_print("EVAL symbol: %s\n", ast->val.string);
return env_get(env, ast);
} else if ((ast->type == MAL_LIST) || (ast->type == MAL_VECTOR)) {
//g_print("EVAL sequential: %s\n", _pr_str(ast,1));
MalVal *el = _map2((MalVal *(*)(void*, void*))EVAL, ast, env);
if (!el || mal_error) return NULL;
el->type = ast->type;
return el;
} else if (ast->type == MAL_HASH_MAP) {
//g_print("EVAL hash_map: %s\n", _pr_str(ast,1));
GHashTableIter iter;
gpointer key, value;
MalVal *seq = malval_new_list(MAL_LIST,
g_array_sized_new(TRUE, TRUE, sizeof(MalVal*),
_count(ast)));
g_hash_table_iter_init (&iter, ast->val.hash_table);
while (g_hash_table_iter_next (&iter, &key, &value)) {
MalVal *kname = malval_new_string((char *)key);
g_array_append_val(seq->val.array, kname);
MalVal *new_val = EVAL((MalVal *)value, env);
g_array_append_val(seq->val.array, new_val);
}
return _hash_map(seq);
} else {
//g_print("EVAL scalar: %s\n", _pr_str(ast,1));
return ast;
}
}
MalVal *EVAL(MalVal *ast, Env *env) {
if (!ast || mal_error) return NULL;
//g_print("EVAL: %s\n", _pr_str(ast,1));
if (ast->type != MAL_LIST) {
return eval_ast(ast, env);
}
if (!ast || mal_error) return NULL;
// apply list
//g_print("EVAL apply list: %s\n", _pr_str(ast,1));
int i, len;
if (_count(ast) == 0) { return ast; }
MalVal *a0 = _nth(ast, 0);
if ((a0->type & MAL_SYMBOL) &&
strcmp("def!", a0->val.string) == 0) {
//g_print("eval apply def!\n");
MalVal *a1 = _nth(ast, 1),
*a2 = _nth(ast, 2);
MalVal *res = EVAL(a2, env);
if (mal_error) return NULL;
env_set(env, a1, res);
return res;
} else if ((a0->type & MAL_SYMBOL) &&
strcmp("let*", a0->val.string) == 0) {
//g_print("eval apply let*\n");
MalVal *a1 = _nth(ast, 1),
*a2 = _nth(ast, 2),
*key, *val;
assert_type(a1, MAL_LIST|MAL_VECTOR,
"let* bindings must be list or vector");
len = _count(a1);
assert((len % 2) == 0, "odd number of let* bindings forms");
Env *let_env = new_env(env, NULL, NULL);
for(i=0; i<len; i+=2) {
key = g_array_index(a1->val.array, MalVal*, i);
val = g_array_index(a1->val.array, MalVal*, i+1);
assert_type(key, MAL_SYMBOL, "let* bind to non-symbol");
env_set(let_env, key, EVAL(val, let_env));
}
return EVAL(a2, let_env);
} else if ((a0->type & MAL_SYMBOL) &&
strcmp("do", a0->val.string) == 0) {
//g_print("eval apply do\n");
MalVal *el = eval_ast(_rest(ast), env);
return _last(el);
} else if ((a0->type & MAL_SYMBOL) &&
strcmp("if", a0->val.string) == 0) {
//g_print("eval apply if\n");
MalVal *a1 = _nth(ast, 1);
MalVal *cond = EVAL(a1, env);
if (!cond || mal_error) return NULL;
if (cond->type & (MAL_FALSE|MAL_NIL)) {
// eval false slot form
if (ast->val.array->len > 3) {
return EVAL(_nth(ast, 3), env);
} else {
return &mal_nil;
}
} else {
// eval true slot form
MalVal *a2 = _nth(ast, 2);
return EVAL(a2, env);
}
} else if ((a0->type & MAL_SYMBOL) &&
strcmp("fn*", a0->val.string) == 0) {
//g_print("eval apply fn*\n");
MalVal *mf = malval_new(MAL_FUNCTION_MAL, NULL);
mf->val.func.evaluator = EVAL;
mf->val.func.args = _nth(ast, 1);
mf->val.func.body = _nth(ast, 2);
mf->val.func.env = env;
return mf;
} else {
//g_print("eval apply\n");
MalVal *el = eval_ast(ast, env);
if (!el || mal_error) { return NULL; }
MalVal *f = _first(el),
*args = _rest(el);
assert_type(f, MAL_FUNCTION_C|MAL_FUNCTION_MAL,
"cannot apply '%s'", _pr_str(f,1));
return _apply(f, args);
}
}
// print
char *PRINT(MalVal *exp) {
if (mal_error) {
fprintf(stderr, "Error: %s\n", mal_error->val.string);
malval_free(mal_error);
mal_error = NULL;
return NULL;
}
return _pr_str(exp,1);
}
// repl
// read and eval
MalVal *RE(Env *env, char *prompt, char *str) {
MalVal *ast, *exp;
ast = READ(prompt, str);
if (!ast || mal_error) return NULL;
exp = EVAL(ast, env);
if (ast != exp) {
malval_free(ast); // Free input structure
}
return exp;
}
// Setup the initial REPL environment
Env *repl_env;
void init_repl_env() {
repl_env = new_env(NULL, NULL, NULL);
// core.c: defined using C
int i;
for(i=0; i < (sizeof(core_ns) / sizeof(core_ns[0])); i++) {
env_set(repl_env,
malval_new_symbol(core_ns[i].name),
malval_new_function(core_ns[i].func, core_ns[i].arg_cnt));
}
// core.mal: defined using the language itself
RE(repl_env, "", "(def! not (fn* (a) (if a false true)))");
}
int main()
{
MalVal *exp;
char *output;
char prompt[100];
// Set the initial prompt and environment
snprintf(prompt, sizeof(prompt), "user> ");
init_repl_env();
// repl loop
for(;;) {
exp = RE(repl_env, prompt, NULL);
if (mal_error && strcmp("EOF", mal_error->val.string) == 0) {
return 0;
}
output = PRINT(exp);
if (output) {
g_print("%s\n", output);
free(output); // Free output string
}
//malval_free(exp); // Free evaluated expression
}
}
|